

UNIT-I

COMPUTERSYSTEMOVERVIEW

ComputerSystemOverview-BasicElements,InstructionExecution,Interrupts,MemoryHierarchy,Cache

Memory,DirectMemoryAccess,MultiprocessorandMulticoreOrganization.Operatingsystemoverview-

objectives and functions, Evolution of Operating System.- Computer System Organization- Operating

System Structure and Operations- System Calls, System Programs, OS Generation and System Boot.

BASICELEMENTSOFACOMPUTER.

Atatoplevel,acomputerconsistsofprocessor,memory,andI/Ocomponents,with

oneormoremodulesofeachtype.Thesecomponentsareinterconnectedinsomefashion to

achieve the main function of the computer, which is to execute programs.

Thus,therearefourmainstructuralelements:

 Processor: Controls the operation of the computer and performs its data processing functions.

When there is only one processor, it is often referred to as the central processing unit (CPU).

 Main memory: Stores data and programs. This memory is typically volatile; that is, when the

computerisshutdown,thecontentsofthememoryarelost.Incontrast,thecontentsofdiskmemory are

retained even when thecomputer system is shut down. Mainmemory isalso referredto asreal

memory or primary memory.

 I/O modules: Move data between the computer and its external environment. The external

environment consists of a variety of devices, including secondary memory devices (e.g., disks),

communications equipment, and terminals.

 Systembus:Providesforcommunicationamongprocessors,mainmemory,andI/Omodules.

Thefiguredepictsthesetop-levelcomponents.Oneoftheprocessor’sfunctionsistoexchange data

with memory. For this purpose, it typically makes use of two internal (to the

processor)registers:amemoryaddressregister(MAR),whichspecifiestheaddressinmemoryforthenext read or

write; and a memory buffer register (MBR), which contains the data to be written into memoryor which

receives the data read from memory.

Similarly, an I/O address register (I/OAR) specifies a particular I/O device. An I/O buffer

register (I/OBR) is used for the exchange of data between an I/O module and theprocessor.

Amemorymoduleconsistsofasetoflocations,definedbysequentiallynumbered

addresses.Eachlocationcontainsabitpatternthatcanbeinterpretedaseitheraninstruction or

data. An I/O module transfers data from external devices to processor and memory,andviceversa.

It contains internal buffers for temporarily holding data until they can be sent on.

INSTRUCTIONEXECUTIONWITHINSTRUCTIONEXECUTIONCYCLE.

Aprogramtobeexecutedbyaprocessorconsistsofasetofinstructionsstoredin memory. In its

simplest form, instruction processing consists of two steps:

The processor reads (fetches) instructions from memory one at a time and executes each

instruction. Program execution consists of repeating the process of instruction fetch and

instruction execution.

The processing required for a single instruction is called an instruction cycle. Using a

simplified two-step description, the instruction cycle is depicted in Figure.

Thetwostepsarereferredtoasthe

(i)Fetchstage(ii)Executionstage.

Programexecutionhaltsonlyiftheprocessoristurnedoff,somesortofunrecoverableerror occurs,

or a program instruction that halts the processor is encountered.

The program counter (PC) holds the address of the next instruction to be fetched. Unless

instructed otherwise, the processor always increments the PC after eachinstruction fetch

so that it will fetch the next instruction in sequence.

For example, consider a simplified computer in which each instruction occupies one 16-bit

word of memory. Assume that the program counter is set to location 300. The processorwill

next fetch the instruction at location 300. On succeeding instructioncycles, it will fetch

instructions from locations 301, 302, 303, and so on. This sequence may be altered,as explained

subsequently.

Thefetchedinstructionisloadedintotheinstructionregister(IR).Theinstructioncontains

bitsthatspecifytheactiontheprocessoristotake.Theprocessorinterprets

theinstructionandperformstherequiredaction.

Ingeneral,theseactionsfallintofourcategories:

 Processor-memory:Datamaybetransferredfromprocessortomemoryorfrommemory to

processor.

 Processor-I/O: Data may be transferred to or from a peripheral device by transferring

between the processor and an I/O module.

 Dataprocessing:Theprocessormayperformsomearithmeticorlogicoperationondata.

 Control: An instruction may specify that the sequence of execution be altered. For

example, the processor may fetch an instruction from location 149, which specifies that

the next instruction will befrom location 182. The processor setsthe programcounterto

182.Thus,onthenextfetchstage,theinstructionwillbefetchedfromlocation182 rather than

150.

Figure shows a partial program execution, showing the relevant portions of memory and

processor registers. The program fragment shown adds the contents of the memory word at address

940 to the contents of the memory word at address 941 and stores the result in the latter location.

Threeinstructions,whichcanbedescribedasthreefetchandthreeexecutestages,arerequired:

1. The PC contains 300, the address of the first instruction. This instruction (the value 1940 in

hexadecimal) is loaded into the IR and the PC is incremented. Note that this process involves the

use of a memory address register (MAR) and a memory buffer register (MBR). For simplicity,

these intermediate registers are not shown.

2. Thefirst4bits(firsthexadecimaldigit)intheIRindicatethattheACistobeloadedfrommemory. The

remaining 12 bits (three hexadecimal digits) specify the address, which is 940.

3. Thenextinstruction(5941)isfetchedfromlocation301andthePCisincremented.

4. TheoldcontentsoftheACandthecontentsoflocation941areaddedandtheresultisstoredinthe AC.

5. Thenextinstruction(2941)isfetchedfromlocation302andthePCisincremented.

6. ThecontentsoftheACarestoredinlocation941.

In this example, three instruction cycles, each consisting of a fetch stage and an execute stage, are

neededtoaddthecontentsoflocation940tothecontentsof941.Withamorecomplexsetofinstructions, fewer

instruction cycles would be needed.

INTERRUPTPROCESSING.

Virtually all computers provide a mechanism by which other modules (I/O , memory) may

interrupt the normal sequence of the processor. Interrupts are provided primarily as a way to improve

processor utilization.

FourClassesofInterruptsare

1. Program Generated by some conditionthat occurs asa result of an instruction execution, suchas

arithmetic overflow, division by zero, attempt to execute an illegal machine instruction, and

reference outside a user’s allowed memory space.

2. Timer Generated by a timer within the processor. This allows the operating system to perform

certain functions on a regular basis.

3. I/O Generated by an I/O controller, to signal normal completion of an operation or to signal a

variety of error conditions.

4. HardwarefailureGeneratedbyafailure,suchaspowerfailureormemoryparityerror.

The user program performs a series of WRITE calls interleaved with processing. The solid

verticallinesrepresentsegmentsofcodeinaprogram.Codesegments1,2,and3refertosequences

ofinstructionsthatdonotinvolveI/O.TheWRITEcallsaretoanI/Oroutinethatisasystemutility and that

will perform the actual I/O operation.

TheI/Oprogramconsistsofthreesections:

• A sequence of instructions, labeled 4 in the figure, to prepare for the actual I/O operation. This

may include copying the data to be output into a special buffer and preparing the parameters for a

device command.

• The actual I/O command. Without the use of interrupts, once this command is issued, the

program must wait for the I/O device to perform the requested function (or periodicallycheckthe

status, or poll, the I/O device). The program might wait by simply repeatedly performing a test

operation to determine if the I/O operation is done.

• Asequenceofinstructions,labeled5inthefigure,tocompletetheoperation.Thismay include setting

a flag indicating the success or failure of the operation.

INTERRUPTPROCESSING

Thefollowinggivesthedetailedinterruptprocessingprocedure:

Aninterrupttriggersanumberofevents,bothintheprocessorhardwareandinsoftware.

This figure shows a typical sequence. When an I/O device completes an I/O operation, the

following sequence of hardware events occurs:

1. Thedeviceissuesaninterruptsignaltotheprocessor.

2. Theprocessorfinishesexecutionofthecurrentinstructionbeforerespondingto the

interrupt.

3. Theprocessortestsforapendinginterruptrequest,determinesthatthereisone, and

 sends an acknowledgment signal to the device that issued the interrupt. The

acknowledgment allows the device to remove its interrupt signal.

4. Theprocessornextneedstopreparetotransfercontroltotheinterruptroutine.

5. Theprocessorthenloadstheprogramcounterwiththeentrylocationofthe

interrupt- handling routine that will respond to this interrupt.

6. Atthispoint,theprogramcounterandPSWrelatingtotheinterruptedprogram have

 been saved on the control stack.

7. Theinterrupthandlermaynowproceedtoprocesstheinterrupt.

8. Thesavedregistervaluesareretrievedfromthestackandrestoredtothe

registers

9. ThefinalactistorestorethePSWandprogramcountervaluesfromthestack. It is

important to save all of the state information about the interrupted program for

later resumption.

Becausetheinterruptisnotaroutinecalledfromtheprogram.

Rather,theinterruptcanoccuratanytimeandthereforeatany pointin the

 execution of a user program.

Itsoccurrenceisunpredictable.

MULTIPLE INTERRUPTS

Theaboveonly discussedthecase in which a single interrupt

 happens.Actually,inac

omputersystem,therearemultipleinterruptsignalsources,somorethanoneinterruptrequests may

happenatthesame timeor duringa same period.

The typical two approaches are: sequential interrupt processing-by disabling

interruptrequestwhileaninterruptisbeingprocessed,allinterruptswillbeprocessedsequentially(usually

PSWcontainsabitforthispurpose);nestedinterruptprocessing-allthe

interruptsmaybeassigneddifferentpriorities,sothatwheneveraninterruptoccurswhilean

interrupthandlerisrunning,theirprioritieswillbecomparedfirst,andthefurtheraction

willbedeterminedaccordingtotheresult. Thesetwoapproaches are

illustrated bythefollowingfigures:

a) SequentialInterruptProcessing

Twoapproachescanbetakentodealingwithmultipleinterrupts.Thefirstisto disable

interrupts while an interrupt is being processed. A disabled interrupt

simply means that the processor ignores any new interrupt request signal. If an

interrupt occursduringthistime,itgenerallyremainspendingandwillbe

checked by the processor after the processor has re-enabled interrupts.

Thus if an interrupt occurs when a user program is executing, then interrupts are disabled

immediately.Aftertheinterrupt-handlerroutinecompletes,interruptsarere-enabledbefore

resumingtheuser programand the processor checkstoseeifadditional interrupts have

occurred. This approach is simple, as interrupts are handled in strict sequential order

Thedrawbackofsequentialapproachisthatitdoesnottakeintoaccountrelativepriorityor time- critical

needs.

b) NestedInterruptProcessing

Asecondapproachistodefineprioritiesforinterruptsandtoallowaninterruptof higher priority

to cause a lower-priority interrupt handler to be interrupted.

Asanexampleofthissecondapproach,considerasystemwiththreeI/Odevices:

• aprinter(priority 2),

• adisk(priority4),and

• acommunicationsline(priority5).

This figure illustrates a possible sequence.

1. Auserprogrambeginsatt=0.

2. Att=10,aprinterinterruptoccurs;

userinformation is placedonthe control stackand executioncontinues atthe printer

interrupt service routine (ISR).

3. Whilethisroutineisstillexecuting,att=15acommunicationsinterruptoccurs.

Because the communications line has higher priority than the printer, the interrupt

request is honored.

4. TheprinterISRisinterrupted,itsstateispushedontothestack,andexecution continues at

the communications ISR.

5. Whilethisroutineisexecuting,adiskinterruptoccurs(t=20).

Because this interrupt is of lower priority, it is simply held, and the communications

ISR runs to completion.

6. WhenthecommunicationsISRiscomplete(t=25),thepreviousprocessorstateis restored,

which is the execution of the printer ISR.

7. However,beforeevenasingleinstructioninthatroutinecanbeexecuted,theprocessor

honors the higher-priority disk interrupt and transfers control to the disk ISR.

8. Onlywhenthatroutineiscomplete(t=35)istheprinterISRresumed.

9. Whenthatroutinecompletes(t=40),controlfinallyreturnstotheuserprogram.

MEMORYHIERARCHY.

MemoryHierarchy

Thememoryunitisanessential componentinanydigitalcomputersinceitisneeded for storing

programs and data.

Not all accumulated information is needed by the CPU at the same time. Therefore, it is more
economical to use low-cost storage devices to serve as a backup for storing the information that is not

currently used by CPU.

Computer Memory Hierarchy is a pyramid structure that is commonly used to illustrate the
significant differences among memory types.

ThememoryunitthatdirectlycommunicateswithCPUiscalledthemainmemory. Devices
that provide backup storage is called auxiliary memory.

Thememoryhierarchysystemconsistsofallstoragedevicesemployedinacomputer system from

the slow by high-capacity auxiliary memory to a relatively faster main memory, to an even

smaller and faster cache memory

Performance

Access time —Time between presenting the address and getting the valid data

MemoryCycletime —Timemayberequiredforthememoryto“recover”beforenext

access

—Cycletimeisaccess+recovery

Transfer Rate —Rate at which data can be moved
Goingdownthehierarchy

– Decreasingcostper bit
– Increasingcapacity
– Increasingaccess time

– Decreasingfrequencyofaccesstothememorybytheprocessor

MainMemory

MostofthemainmemoryinageneralpurposecomputerismadeupofRAM integrated

circuits chips, but a portion of the memory may be constructed with ROM
chips

RAM

1. RAM–RandomAccessmemory
2. ROM–ReadOnlymemory

ARAMchipisbettersuitedforcommunicationwiththeCPUifithasoneor

more controlinputsthatselectthechipwhenneeded.

Keyfeatures

RAMispackagedasachip.

Basicstorageunitisacell(onebitpercell). Multiple

RAM chips form a memory.

StaticRAM (SRAM)

Eachcellstoresbitwithasix-transistorcircuit.
Retains value indefinitely, as long as it is kept powered.

Relativelyinsensitivetodisturbancessuchaselectricalnoise.

Faster and more expensive than DRAM.

DynamicRAM(DRAM)

Eachcellstoresbitwithacapacitorandtransistor. Value

must be refreshed every 10-100 ms.

Sensitive todisturbances.
SlowerandcheaperthanSRAM.

ROM

ROMisused for storingprograms that arePERMENTLY resident in the computer and for

tables of constants that do not change in value once the production of the computeris completed.

The ROM portionof main memory is needed for storing an initial program

calledbootstraploader, which is to start the computer software operating when power is turned

off.

DataisprogrammedintothechipusinganexternalROMprogrammer The

programmed chip is used as a component into the circuit

Thecircuitdoesn’tchangethecontentoftheROM

AuxiliaryMemory

Auxiliarymemory,alsoknownasauxiliarystorage,secondarystorage,secondarymemory or

external memory, is a non-volatile memory (does not lose stored data when thedevice

is powered down) that is not directly accessible by the CPU, because it is not accessedvia the

input/output channels (it is an external device).

Someexamplesofauxiliarymemorywouldbedisks,externalharddrives,USBdrives, etc.

CacheMemory

Cachememory,alsocalledCPUmemory,israndomaccessmemory(RAM)thatacomputer
microprocessorcan access more quickly than it can access regular RAM. Thismemoryistypically

integrated directly with the CPU chip or placed on a separate chip that hasa

separatebusinterconnectwiththeCPU.
Thebasicpurposeof cache memory is to store program instructions that are frequentlyre-

referenced by software during operation. Fast access to these instructions increases theoverall

speedofthesoftwareprogram.

As the microprocessor processes data, it looks first in the cache memory; if it finds the

instructionsthere(fromapreviousreadingofdata),itdoesnothavetodoamoretime-consuming reading of
data from larger memory or other data storage devices.

TertiaryStorage

Tertiary Storage, also known as tertiary memory, consists of anywhere from one to several

storage drives. It is a comprehensive computer storage system that is usually very slow, so it is

usually used to archive data that is not accessed frequently. A computer can accesstertiarystorage
without being told to do so, which is unlike off-line storage.

Thistypeofcomputerstoragedeviceisnotaspopularastheothertwostoragedevicetypes.

Its main use is for storing data at a very large-scale. This includes optical jukeboxes and tape

libraries. Tertiary storage devices require a database to organize the datathatarestoredinthem,and the

computer needs to go through the database to access those data.

Memoryhierarchyisjustliketherealworldsituationwhere-

1. Atrainfareischeaper anditcancarryalotpeopleatatimebutittakeslongtime

2. Theairfareofprofessionalflightsismorethanthetrain,itcancarrylessernumberofpeople but it is

much faster than the train
3. Theairfareforpersonaljetisfurtherhigh,itcancarryfurtherlessernumberofpeoplebutitis fastest of

the three.

So, depending upon the price and the urgency to reach destination, you will use combinationof

these in different situations.

Thememoryhierarchyisexactlythesame.Here,thesituationis-

1. Weneedalot ofmemorywhichischeapandcouldbeslow(secondarymemory,HardDisk)

2. We also need some memory which could be smaller than secondary memory but should

be faster than it (primary memory, RAM)
3. Wealsoneedanotherkindofmemorywhichcouldbesmallerthantheprimary

memory but it should be much faster than it (cache memory).

That'swhyweneedmemory hierarchy.

CACHEMEMORY

Concept

Smallamountoffastestmemory.

SitsbetweennormalmainmemoryandCPU. May

be located on CPU chip or module.

CachePrinciples

Containscopyofaportionofmainmemory

Processor first checks cache

If desired data item not found, relevant block of memory read into cache

Becauseoflocalityofreference,itislikelythatfuturememoryreferencesarein
thatblock.

CacheOperation

CPUrequestscontentsofmemorylocation. Check

cache for this data.

Ifpresent,getfromcache(fast).
Ifnotpresent,readrequiredblockfrommainmemorytocache. Then
deliver from cache to CPU.

Cacheincludestagstoidentifywhichblockofmainmemoryisineachcacheslot.

ThreeLevelCacheMemoryHierarchy

The L3 cache is usually built onto the motherboard between the main memory (RAM)

and the L1 and L2 caches of the processor module.

Thisservesasanotherbridgetoparkinformationlikeprocessorcommandsandfrequently
useddatainordertopreventbottlenecksresultingfromthefetchingofthesedata fromthemain

memory.

In short, the L3cache of today is what the L2cache was before it got built-in within the

processor module itself.

The CPU checks for information it needs from L1 to the L3 cache. If it does not findthis

info in L1 it looks to L2 then to L3, the biggest yet slowest in the group.

The purpose oftheL3differs dependingonthedesignoftheCPU. In some casesthe L3 holds

copies of instructions frequently used by multiple cores that share it.

MostmodernCPUshavebuilt-inL1andL2cachesper coreandshareasingleL3cache on the
motherboard, while other designs have the L3 on the CPU die itself.

CacheMemoryStructure

Naddresslines=>2nwordsofmemory

CachestoresfixedlengthblocksofKwords
CacheviewsmemoryasanarrayofMblockswhereM=2n/K

Ablockofmemoryincacheisreferredtoasaline.Kisthelinesize
CachesizeofCblockswhereC<M
(considerably)

Eachlineincludesatagthatidentifiestheblockbeing stored

Tagisusuallyupperportionofmemoryaddress
Asasimpleexample,supposethatwehavea6-bitaddressanda2-bittag.

The tag 01 refers to the block of locations with the following addresses: 010000, 010001,

010010,010011,010100,010101,010110,010111,011000,011001,011010,011011,011100,

011101,011110,and011111.

CacheReadOperation

The processor generates the address, RA, of a word tobe read. If the word is contained inthe

cache,itisdeliveredtotheprocessor.Otherwise,theblockcontainingthatwordisloadedinto the cache

and the word is delivered to the processor.

CacheDesign

ElementsofCacheDesign

• Addresses(logicalorphysical)

• Size
• MappingFunction(direct,associative,setassociative)

• ReplacementAlgorithm(LRU,LFU,FIFO,random)
• WritePolicy(writethrough,writeback,writeonce)

• LineSize
• NumberofCaches(howmanylevels,unifiedorsplit)

Cache size

Evensmallcacheshavesignificantimpactonperformance Block

size

Theunitofdataexchangedbetweencacheandmainmemory
Larger block size yields more hits until probability of using newly fetched databecomes

less than the probability of reusing data that have to be moved out of cache.

Mappingfunction
Determineswhichcachelocationtheblockwilloccupy

Replacement algorithm

Chooseswhichblocktoreplace

Least-recently-used(LRU)algorithm
Write policy

– Dictateswhenthememorywriteoperationtakesplace

– Canoccureverytimetheblockisupdated

– Canoccurwhentheblockisreplaced

Minimize write operations

Leavemainmemoryinanobsoletestate

DIRECTMEMORYACCESS(DMA)

Three techniques are possible for I/O operations: programmed I/O, interrupt-driven I/O, and direct

memoryaccess(DMA).BeforediscussingDMA,webrieflydefinetheothertwotechniques;seeAppendix

Cformoredetail.WhentheprocessorisexecutingaprogramandencountersaninstructionrelatingtoI/O, it

executes that instruction by issuing a command to the appropriate I/O module.

In the case of programmed I/O , the I/O module performs the requested action and then sets the
appropriate bits in the I/O status register but takes no further action to alert the processor. In particular, it

does not interrupt the processor. Thus, after the I/O instruction is invoked, the processor must take some

active role in determining when the I/O instruction is completed. For this purpose, the processor
periodically checks the status of the I/O module until it finds that the

Operationiscomplete.

With programmed I/O, the processor has to wait a long time for the I/O module of concern to be ready

foreitherreceptionortransmissionofmoredata.Theprocessor,whilewaiting,mustrepeatedlyinterrogate the

status of the I/O module.

As a result, the performance level of the entire system is severely degraded. An alternative, known as

interrupt-drivenI/O,isfortheprocessortoissueanI/Ocommandtoamoduleandthengoontodosome other

useful work.

The I/O module will then interrupt the processor to request service when it is ready to exchange data
with the processor. The processor then executes the data transfer, as before, and then resumes its former

processing.

When large volumes of data are to be moved, a more efficient technique is required: direct memory

access (DMA). The DMA function can be performed by a separate module on the system bus or it can be

incorporatedintoanI/Omodule.Ineithercase,thetechniqueworksasfollows.Whentheprocessorwishes

toreadorwriteablock ofdata,it issuesacommandto the DMAmodule, bysendingtotheDMA module the

following information:

• Whetherareadorwriteisrequested

• TheaddressoftheI/Odeviceinvolved

• Thestartinglocationinmemorytoreaddatafromorwritedatato

• Thenumberofwordstobereadorwritten

The processor then continues with other work. It has delegated this I/O operation to the DMA module,

andthatmodulewilltakecareofit.TheDMAmoduletransferstheentireblockofdata,onewordatatime,

directlytoorfrommemorywithoutgoingthroughtheprocessor.Whenthetransferiscomplete,the DMA

modulesendsaninterruptsignaltotheprocessor.Thus,theprocessorisinvolvedonlyatthebeginningand end of
the transfer.

TheFigurebelowillustratestheDMAprocess.

MULTIPROCESSORANDMULTICOREORGANIZATION

MULTIPROCESSING

Multiprocessing is the use of two or more central processing units (CPUs) within a single

computer system. The term also refers to the ability of a system to support more than one processorand/or

the ability to allocate tasks between them.

Therearemultipleprocessors,eachofwhichcontainsitsowncontrolunit,arithmeticlogicunit, and

registers. Each processor hasaccesstoa sharedmainmemory andthe I/Odevices through some form of

interconnection mechanism; a shared bus is a common facility. The processors can communicate with

eachotherthroughmemory(messagesandstatusinformationleftinsharedaddressspaces).Itmay alsobe possible

for processors to exchange signals directly. The memory is often organized so that multiple simultaneous

accesses to separate blocks of memory are possible.

Multiprocessorsystemshavethreemainadvantages.

1. Increasedthroughput.

2. Economyofscale.

3. Increasedreliability.

The mostcommonmultiple-processor systemsnow use

symmetric multiprocessing (SMP), inwhich each processor runs an identical copy of the

operating system, and these copiescommunicate with one another as needed.

Some systems use asymmetric multiprocessing, in which each

processor is assignedaspecifictask.Amasterprocessorcontrolsthesystem;theotherprocessors either look

to the master forinstruction orhave predefined tasks.This schemedefinesa master-

slaverelationship.Themasterprocessorschedulesandallocatesworktotheslaveprocessors.

An SMP organization has a number of potential advantages over a uni-processor

organization, including the following:

• Performance:Iftheworktobedonebyacomputercanbeorganized so

thatsome portions of the work can be done in parallel, then a system

withmultipleprocessorswillyieldgreaterperformancethanonewith a

single processor of the same type.

• Availability:Inasymmetricmultiprocessor,becauseallprocessorscan

perform the same functions, the failure of a single processor does

nothaltthemachine.Instead,thesystemcancontinuetofunction at

reduced performance.

• Incremental growth: A user canenhance the performance of a system

by adding an additional processor.

• Scaling: Vendors can offer a range of products with different price and

performancecharacteristicsbasedonthenumberofprocessorsconfigured in

the system.

MULTICORECOMPUTERS

A multicore computer, also known as a chip multiprocessor, combines two or more

processors (called cores) on a single piece of silicon (called a die). Typically, each core consists of all of

the components of an independent processor, such as registers, ALU, pipeline hardware, and control unit,

plus L1 instruction and data caches. In addition to the multiple cores, contemporary multicore chips also

include L2 cache and, in some cases, L3 cache. The motivation for the development of multicore

computers can be summed up as follows.

For decades, microprocessor systems have experienced a steady, usually exponential, increase

inperformance.Thisispartlyduetohardwaretrends,suchasanincreaseinclockfrequencyandtheability to put

cache memory closer to the processor because of the increasing miniaturization of microcomputer

components. Performance has also been improved by the increased complexity of processor design to

exploit parallelism in instruction execution and memory access.

Inbrief,designershavecomeupagainstpracticallimitsintheabilitytoachievegreaterperformanceby

meansofmorecomplexprocessors.Designershavefoundthatthebestwaytoimproveperformancetotake

advantageofadvancesinhardwareistoputmultipleprocessorsandasubstantialamountofcachememory on a

single chip

An example of a multicore system is the Intel Core i7, which includes four x86processors, each witha

dedicated L2 cache, and with a shared L3 cache. One mechanism Intel uses to make its caches more

effective is prefetching, in which the hardware examines memory access patterns and attempts to fill the

caches speculatively with data that’s likely to be requested soon.

COMPONENTSOFOPERATINGSYSTEM.

Thereareeightmajoroperatingsystemcomponents.
They are : Process management

Main-memorymanagement

 File management

 I/O-systemmanagement
 Secondary-storagemanagement
 Networking

 Protectionsystem

 Command-interpretersystem
(i) ProcessManagement

Aprocesscanbethoughtofasaprograminexecution.Abatchjobisaprocess. A time shared
user program is a process.

Aprocessneedscertainresources-includingCPUtime,memory,files, and
I/O devices-to accomplish its task.

A program by itself is not a process; a program is a passive entity, such as the

contents of a file stored on disk, whereas a process is an activeentity,with a

program counter specifying the next instruction to execute.

Aprocessistheunit ofworkinasystem.
Theoperatingsystemisresponsibleforthe following activities in connectionwith process

management:

Creatinganddeletingbothuserandsystemprocesses

Suspending and resuming processes

Providingmechanismsforprocesssynchronization
Providingmechanismsfor process communication

Providing mechanisms for deadlock handling

(ii) Main–MemoryManagement
Main memory isa large array of wordsor bytes, ranging in size from

hundreds of thousands to billions. Each word or byte has its own address.

MainmemoryisarepositoryofquicklyaccessibledatasharedbytheCPUandI/O devices.

ToimproveboththeutilizationoftheCPUandthespeedofthecomputer'sresponseto its users,
we must keep several programs in memory.

The operating system is responsible for the followingactivitiesinconnection
with memory management:

Keeping track of which parts of memory are currently being usedandby whom.

Decidingwhich processesaretobeloadedintomemorywhen

memory space becomes available

Allocating anddeallocating memoryspace asneeded.

(iii) FileManagement

Filemanagementisoneofthemostvisiblecomponentsofanoperating system.

The operating systemis responsible for the following activities

in connection with file management:

Creatinganddeletingfiles

Creatinganddeletingdirectories

Supportingprimitivesformanipulatingfilesanddirectories

Mapping files onto secondary storage
Backingupfilesonstable(nonvolatile)storagemedia

(iv) I/OSystemmanagement
Oneofthepurposesofanoperatingsystemistohidethe

peculiaritiesofspecifichardwaredevicesfromtheuser. Thisisdoneusing theI/O

subsystem.

TheI/Osubsystemconsistsof

A memory-management componentthat includes buffering,
caching, and spooling

Ageneraldevice-driverinterface

Driversforspecifichardwaredevices

(v) Secondarystoragemanagement
Because main memory is too small to accommodate all data and

programs,andbecausethedatathatitholdsarelostwhenpowerislst

thecomputersystemmustprovidesecondarystoragetobackup main

memory.

(vi) Networking

Theoperatingsystemisresponsibleforthefollowingactivitiesin connection
with disk management:

Free-spacemanagement

Storageallocation Disk

scheduling

Adistributedsystemisacollectionofprocessorsthatdonot

share memory,peripheraldevices,oraclock.

Instead,eachprocessorhasitsownlocalmemoryandclock,and the processors
communicate with one another through various

communicationlines,suchashigh-speedbusesornetworks.
Theprocessorsinthesystem areconnectedthroughacommunication

network, which can be configured in a number of different ways.

(vii) ProtectionSystem
Variousprocessesmustbeprotectedfromoneanother'sactivities.For

that purpose, mechanisms ensure that the files, memory segments, CPU,

and other resources can be operated on by only those processes that

have gainedproperauthorizationfromtheoperating system.

Protectionisanymechanismforcontrollingtheaccessof
programs,processes,oruserstotheresourcesdefinedbyacomputer system.

Protectioncanimprovereliabilitybydetectinglatenterrorsatthe

interfaces between component subsystems.
(viii) Command-InterpreterSystem

One of the most importantsystemsprogramsforanoperatingsystemis the

 command interpreter.

Itistheinterfacebetweentheuserandtheoperatingsystem.
Someoperatingsystemsincludethecommandinterpreterinthe kernel.

Other operating systems, such as MS-DOS and UNIX, treat the

commandinterpreterasaspecialprogramthatisrunningwhenajobis initiated, or
when a user first logs on (on time-sharing systems).

Manycommandsaregiventotheoperatingsystem bycontrol statements.

Whena newjob is startedin a batchsystem, or when auserlogs on to

a time-shared system, a program that reads and interprets control statements

is executed automatically.
This program issometimescalled thecontrol-cardinterpreter or the

Command-line interpreter, and is often known as the shell.

SERVICESOFOPERATING SYSTEM

Anoperatingsystemprovidesservicestoprogramsandtotheusersofthoseprograms.

Itprovidedbyoneenvironmentfortheexecutionofprograms.

Theservicesprovidedbyoneoperatingsystemisdifficultthanotheroperatingsystem.

Operating system makes the programming task easier. The common service providedbythe

operating system is listed below.

1. Programexecution

2. I/Ooperation

3. Filesystemmanipulation

4.Communications

5.Errordetection

TheOSprovidescertainservicestoprogramsandtotheusersofthoseprograms.
1. Programexecution:Thesystemmustbeabletoloadaprogramintomemoryandtorun that program.

The program must be abletoendits execution, either normally or abnormally (indicating error).

2. I/Ooperations:ArunningprogrammayrequireI/O.ThisI/OmayinvolveafileoranI/Odevice.

3. File-system manipulation:Theprogramneedstoread,write,create,deletefiles.
4. Communications:Inmanycircumstances,oneprocessneedstoexchange

Informationwithanotherprocess.Suchcommunicationcanoccurintwomajorways.Thefirst takes

place between processes that are executing

onthesamecomputer;thesecondtakesplacebetweenprocessesthatareexecutingondifferent computer
systems that are tied together by a computer network.

5. Errordetection:Theoperatingsystemconstantlyneedstobeawareofpossibleerrors.Errors may

occur in the CPU and memory hardware (such as amemoryerrororapowerfailure),

inI/O devices (suchasa parity error on tape,aconnectionfailureonanetwork,orlackofpaper
intheprinter),andintheuserprogram(suchasanarithmeticoverflow,anattempttoaccessanillegal

memorylocation,oratoo-greatuseofCPUtime).Foreachtypeoferror,theoperatingsystemshould take

the appropriate actionto ensure correct and consistent computing.

6. Resourceallocation:DifferenttypesofresourcesaremanagedbytheOs.Whentherearemultiple users
or multiple jobs running at the same time, resources must be allocated to each of them.

7. Accounting:Wewanttokeeptrackofwhichusersusehowmanyandwhichkindsofcomputer

resources. This record keeping may be used foraccountingorsimplyfor accumulating usage
statistics.

8. Protection:The ownersofinformationstoredinamultiusercomputersystem may want to control

use of that information. Security of the system is also important.

OPERATINGSYSTEMSTRUCTURES

SIMPLE STRUCTURE:

In MS-DOS, application programs are able to access the basic I/O routines to write

directly to the display and disk drives. Such freedom leaves MS-DOS vulnerable to errant (or

malicious) programs, causing entire system to crash when user programs fail.

MS-DOSLAYERSTRUCTURE:

 UNIX operating system. It consists of two separable parts, the kernel and the system

programs. The kernel is further separated into a series of interfaces and device drivers.Wecanview the

traditional UNIX operating system as being layered. Everything belowthesystemcallinterface

and above the physical hardware is the kernel.

The kernel provides the file system, CPU scheduling, memory management, and other

operating system functions through system calls. There is number of functionality tobecombined

into one level. This monolithic structure was difficult to implement andmaintain.

LAYEREDAPPROACH:

The operating system is broken into a number of layers (levels). The bottom layer

(layer 0) is the hardware; the highest (layer M) is the user interface.

The main advantage of the layered approach is simplicity of construction

anddebugging.Thelayersareselectedsothateachusesfunctions(operations)andservices ofonly

lower-level layers. This approach simplifies debugging and system verification. The first layer can be

debugged without any concern for the rest of the system, because, by definition, it uses only the

basic hardware to implement its functions.

Once the first layer is debugged, its correct functioning can be assumed while the

second layer is debugged, and so on. If an error is found during the debugging of a particularlayer,

the error must be on that layer, because the layers below it are already debugged.Eachlayerhidesthe

existence of certain data structures, operations, and hardware from higher-level layers.

Themajordifficultywiththelayeredapproachinvolvesappropriatelydefining

thevariouslayersasalayercanuseonlylower-levellayers.Anotherproblemwith layered

implementations is they tend to be less efficient than other types. Each layer adds overheadtothe

system call; the net result is a system call that takes longer than a non- layered system.

ExampleofLayeredApproach

MICROKERNELAPPROACH:

In the mid-1980s, researchers at Carnegie Mellon University developed an operating system

called Mach that modularized the kernel using the microkernel approach. Microkernel’s provide

minimal process and memory management, in addition to a communication facility.

The main function of the micro kernel is to provide a communication facility betweenthe

clientprogramandthevarious servicesrunninginuserspace. Onebenefit ofthemicrokernel approach is ease of

extending the operating system. All new services are addedtouserspaceandconsequentlydo not

require modification of the kernel. The microkernel also provides more security and reliability,

since most services are running as user, rather than kernel-processes.

Microkernel’s can suffer from decreased performance due toincreased system

function overhead.

MODULES:

The current methodology for operating-system design involves using object-oriented

programmingtechniquestocreateamodularkernel.Here,thekernelhasasetofcorecomponents and

links in additional services either during boot time or during run time. Such a

strategyusesdynamicallyloadablemodules.

Such a design allows the kernel to provide core services yet also allows certain features

to be implemented dynamically.

SYSTEMCALLS

Asystemcallisarequestthataprogrammakestothekernelthroughasoftware interrupt.System calls

provide theinterface between aprocess and the operating system.

These calls are generally available as assembly-language instructions. Certain systems allow

system calls to be made directly from a high-level language program, in which case the calls

normally resemble predefined function or subroutine calls.

TYPESOFSYSTEMCALLS:

Traditionally,SystemCallscanbecategorizedinsixgroups,whichare:ProcessControl, File

Management, DeviceManagement,InformationMaintenance, Communications and Protection.

PROCESSCONTROL

 Arunningprogramneedstobeabletostopexecutioneithernormallyorabnormally.

 When execution is stopped abnormally, often a dump of memory is taken and can be
examinedwith a debugger.

Followingarefunctionsofprocesscontrol:

End, abort

Load,execute

Createprocess,terminateprocess
Getprocessattributes,setprocessattributes

Wait for time

Wait event, signal event
Allocateandfreememory

FILEMANAGEMENT

 We first need to be able to create and delete files. Either system call requires the name of the file

and perhaps some of the file's attributes.

 Once the file is created, we need to open it and to use it. We may also read, write, or reposition.

Finally, we need to close the file, indicating that we are no longer using it.

 We may need these same sets of operations for directories if we have a directory structure for

organizing files in the file system.

 In addition, for either files or directories, we need to be able to determine the values of various
attributes and perhaps to reset them if necessary. File attributes include the file name, a file type,

protection codes, accounting information, and so on

Functions:

Create,deletefile

Open, close

Read,write,reposition
Getfileattributes,setfileattributes

DEVICEMANAGEMENT

 A process may need several resources to execute - main memory, disk drives, access to files, and

so on. If the resources are available, they can be granted, and control can be returned to the user
process. Otherwise, the process will have to wait until sufficient resources are available.

 ThevariousresourcescontrolledbytheOScanbethoughtofasdevices.Someofthesedevicesare

physicaldevices(for example,tapes),whileotherscanbethought ofas abstractor virtual devices (for

example, files).

 Once the device has been requested (and allocated to us), we can read, write, and (possibly)
reposition the device, just as we can with files.

 In fact, the similarity between I/O devices and files is so great that many OSs, including UNIX,

merge the two into a combined file-device structure.

 Asetofsystemcallsisusedonfilesanddevices.Sometimes,1/0devicesareidentifiedbyspecial file

names, directory placement, or file attributes.
Functions:

Requestdevice,releasedevice

Read, write, reposition

Getdeviceattributes,setdeviceattributes Logically

attach or detach devices

INFORMATIONMAINTENANCE

 Many system calls exist simply for the purpose of transferring information between the user

program and the OS. For example, most systems have a system call to return the current time and

date.

 Other system calls may return information about the system, such as the number of current users,
the version number of the OS, the amount of free memory or disk space, and so on.

 In addition, the OS keeps information about all its processes, and system calls are used to access

this information. Generally, calls are also used to reset the process information.

Functions:

Gettimeordate,settimeordate

Getsystemdata,setsystemdata

Getprocess,file,ordeviceattributes Set

process,file, or deviceattributes

COMMUNICATIONS

 Therearetwocommonmodelsofinterprocesscommunication:themessage-passingmodelandthe
shared-memory model. In the message-passing model, the communicatingprocesses exchange

messages with one another to transfer information.

 In the shared-memory model, processes use shared memory creates and shared memory attaches

system calls to create and gain access to regions of memory owned by other processes.

 Recallthat,normally,theOStriestopreventoneprocessfromaccessinganotherprocess'smemory.
Sharedmemoryrequiresthattwoormoreprocessesagreetoremovethisrestriction. Theycanthen

exchange information by reading and writing data in the shared areas.

 Message passing is useful for exchanging smaller amounts of data, because no conflicts need be

avoided. It is also easier to implement than is shared memory for intercomputer communication.

 Shared memory allows maximum speed and convenience of communication, since it can be done
atmemoryspeedswhenit takesplacewithina computer.Problemsexist,however,intheareasof

protection and synchronization between the processes sharing memory.

Functions:

Create,deletecommunicationconnection
Send, receive messages

Transfer status information

Attachordetachremotedevices

PROTECTION

GetFileSecurity,SetFileSecurity

GetSecurityGroup,SetSecurityGroup

SYSTEMPROGRAMS

Systemprogramsprovideaconvenientenvironmentforprogramdevelopmentandexecution. They

can be divided into several categories:
1. Filemanagement:Theseprogramscreate,delete,copy,rename,print, dump, list, and generally

manipulate files and directories.

2. Statusinformation:Thestatussuchasdate,time,amountofavailablememoryor diskspace,

number of users or similar status information.
3. File modification: Several text editors may be available to create and

modify the content of files stored on disk or tape.

4. Programming-languagesupport:Compilers,assemblers,andinterpretersforcommon
programming languages are often provided to the user with the operating system.

5. Programloadingandexecution:Thesystemmayprovideabsoluteloaders,relocatableloaders,

linkageeditors,andoverlayloaders.

6. Communications: These programs provide the mechanism for creatingvirtual connections

among processes, users, and different computer systems. (email, FTP, Remote log in)

7. Application programs: Programs that are useful to solve common

problems, or to perform common operations.

Eg.Webbrowsers,databasesystems.

GENERATIONANDSYSTEMBOOT.

Operating-SystemGeneration

 It is possible to design, code, and implement an operating system specifically for one machine

atonesite.Morecommonly,however,operatingsystemsaredesignedtorunonanyofaclassofmachines at a

variety of sites with a variety of peripheral configurations. The system must then be configured or

generatedforeachspecificcomputersite,aprocesssometimesknownassystemgeneration(SYSGEN).

TheoperatingsystemisnormallydistributedondiskorCD-ROM.Togenerateasystem,weuse

aspecial program.TheSYSGENprogram readsfrom agivenfile, or askstheoperatorofthesystem for

informationconcerningthespecificconfigurationofthehardwaresystem,orprobesthehardwaredirectly to

determine what components are there. The following kinds of information must be determined.

What CPUistobeused?

What options(extended instructionsets,floating-pointarithmetic,andsoon)are installed?

FormultipleCPUsystems,eachCPUmustbedescribed.

Howmuchmemoryisavailable?

Some systems will determine this value themselves by referencing memory location after

memory location until an "illegal address" fault is generated. This procedure defines the finallegal

address and hence the amount of available memory.

What devicesareavailable?

The system will need to know how to address each device (the device number), the device

interrupt number, the device's type and model, and any special device characteristics.

What operating-system options are desired, or what parameter values are to be used? These

options or valuesmightincludehowmanybuffers ofwhichsizesshould be used,whattype of

CPU-scheduling algorithm is desired, what the maximum number of processes to be

supportedis,andsoon. Oncethisinformationisdetermined,it can be usedinseveral ways.

SystemBoot

Afteranoperatingsystemisgenerated,itmustbemadeavailableforusebythe hardware. But how
does the hardware know where the kernel is or how to load that kernel?

Theprocedureofstartingacomputerbyloadingthekernelisknownas booting thesystem.

Onmostcomputersystems,asmallpieceofcodeknownasthebootstrapprogramor

bootstrap loader locates the kernel, loads it into main memory, and starts its execution. Some

computer systems, such as PCs, use a two-step process in which a simple bootstrap loader fetches a

more complex boot program from disk, which in turn loads the kernel.

When a CPU receives a reset event—for instance, when it is powered up or rebooted—the

instruction register is loaded with a predefined memory location, and execution starts there. At that

location is the initial bootstrap program.

This program is in the form of read-only memory (ROM), because the RAM is inan

unknown state at system startup. ROM is convenient because it needs no initialization and

cannotbeinfectedbyacomputer virus.

Thebootstrapprogramcanperformavarietyoftasks.Usually,onetaskistorundiagnostics to

determine the state of the machine. If the diagnostics pass, the program can continue with the

booting steps. It can also initialize all aspects of the system,fromCPU registers to device
controllers and the contents of main memory.

Sooner or later, it starts the operating system. Some systems—such as cellular phones, PDAs,

and game consoles—store the entire operating system in ROM. Storing the operating system in
ROM is suitable for small operating systems, simple supportinghardware, and rugged operation.

A problem with this approach is that changing the bootstrap code requires changing the

ROM hardware chips. Some systems resolve this problem by using erasable programmable read-
only memory (EPROM), which is read-only except when explicitly givenacommandtobecome

writable.

All forms of ROM are also known as firmware, since their characteristics fall somewhere

between those of hardware and those of software. A problem with firmware in general is

that executing code there is slower than executing code in RAM.Somesystemsstorethe

operating system in firmware and copy it to RAM for fast execution. A final issue with
firmware is that it is relatively expensive, so usually only small amounts are available.

EVALUATIONOFOPERATINGSYSTEMS.

StagesofEvaluation

SerialProcessing
Usersaccessthecomputerinseries.Fromthelate1940'stomid1950's,theprogrammer interacted

directly with computer hardware i.e., no operating system.

Thesemachineswererunwithaconsoleconsistingofdisplaylights,toggle switches, some form

of input device and a printer. Programs in machine code are loaded

withtheinputdevicelikecardreader.
If an error occur the program was halted and the error condition was indicated by

lights. Programmers examine the registers and main memory to determine error.If the program is
success, then output will appear on the printer.

Mainproblemhereisthesetuptime.Thatissingleprogramneedstoloadsource program

into memory, saving the compiled (object) program and then loading and

linkingtogether.

SimpleBatchSystems

Tospeedupprocessing,jobswithsimilarneedsarebatchedtogetherandrunas a

group. Thus, the programmers will leave their programs with the operator. The
operator will sort programs into batches with similar requirements.

TheproblemswithBatchSystemsare:
Lack of interaction between the user and job.CPU is often idle, because the speeds

of the mechanical I/O devices are slower than CPU. For overcoming this problem use the Spooling

Technique.Spoolisabufferthatholdsoutputforadevice,suchasprinter,that can not

accept interleaved data streams. That is when the job requests the printer
tooutputaline.Thatlineiscopiedintoasystembufferandiswrittentothe disk. When the

job is completed, the output is printed. Spooling technique can keep both the CPU

and the I/O devices working at much higher rates.

MultiprogrammedBatchSystems

Jobs must be run sequentially, on a first-come, first-served basis.

However when several jobs are on a direct-access device like disk, job

scheduling is possible. The mainaspectofjobschedulingismultiprogramming.
Single user cannot keep the CPU or I/O devices busy at all times.

ThusmultiprogrammingincreasesCPUutilization.
Inwhenonejobneedstowait,theCPUisswitchedtoanotherjob,andsoon. Eventually, the first

job finishes waiting and gets the CPU back.

Time-SharingSystems

Time-sharingsystemsarenotavailablein 1960s.Time-sharing or multitaskingis alogical

extension of multiprogramming. That is processors time is shared among multiple users
simultaneously is called time-sharing. ThemaindifferencebetweenMultiprogrammedBatch

Systems and Time-Sharing Systems is in multiprogrammedbatch

systems its objective is maximize processor use, whereas in Time-Sharing Systems its objective is

minimize response time.

MultiplejobsareexecutedbytheCPUbyswitchingbetweenthem,buttheswitches occur so

frequently. Thus, the user can receives an immediate response. For example,in atransaction processing,

processor execute each user program in a short burst or quantum of
computation.Thatisifnusersarepresent,eachusercanget time quantum. When the user

submitsthecommand,theresponsetimeissecondsatmost.

Operating system uses CPU scheduling and multiprogramming to provide each user with a

small portion of a time. Computer systems that were designed primarily as batchsystems have

been modified to time-sharing systems.

ForexampleIBM's OS/360.
Time-sharing operating systems are even more complex than multi-programmed operating

systems. As in multiprogramming, several jobs must be kept simultaneously in memory.

OBJECTIVESANDFUNCTIONSOFANOPERATINGSYSTEMS

AnOSisaprogramthatcontrolstheexecutionofapplicationprogramsandactsas an

interface between applications and the computer hardware. It can be thought of as
having three objectives:

• Convenience:AnOSmakesacomputermoreconvenienttouse.

• Efficiency:AnOSallowsthecomputersystemresourcestobeusedinanefficient
manner.

• Ability to evolve: An OS should be constructed in such a way as to permit the
effectivedevelopment,testing,andintroductionofnewsystemfunctionswithout
interfering with service.

TheOperatingSystemasaUser/ComputerInterface

The hardware and software used in providing applications to a user can be viewed in a layered or

hierarchicalfashion.Theuserofthoseapplications,theenduser,generallyisnotconcernedwiththedetails of
computer hardware. Thus, the end user views a computer system in terms of a set of applications.

An application can be expressed in a programming language and is developed by an application

programmer. If one were to develop an application program as a set of machine instructions that is
completelyresponsibleforcontrollingthecomputerhardware,onewouldbefacedwithanoverwhelmingly

complex undertaking.

To ease this chore, a set of system programs is provided. Some of these programs are referred to as

utilities, or library programs. These implement frequently used functions that assist in program creation,

themanagement offiles, and thecontrol of I/O devices. A programmer will makeuse of thesefacilitiesin

developinganapplication,andtheapplication,whileitisrunning,willinvoketheutilitiestoperformcertain
functions.

Three key

interfacesinatypicalcomputersystem:

• Instruction set architecture (ISA) : The ISA defines the repertoire of machine language instructions
that a computer can follow.This interface is the boundary between hardware andsoftware. Note that both
application programs and utilities may access the ISA directly. For these programs, a subset of the
instructionrepertoireisavailable(userISA).TheOShasaccesstoadditionalmachinelanguageinstructions that
deal with managing system resources (system ISA).

• Applicationbinaryinterface(ABI):TheABIdefinesastandardforbinaryportabilityacrossprograms.
TheABIdefinesthesystemcallinterfacetotheoperatingsystemandthehardwareresources andservices available
in a system through the user ISA.

• Applicationprogramminginterface(API):TheAPIgivesaprogramaccesstothehardwareresources and
services available in a system through the user ISA supplemented with high-level language (HLL) library
calls. Any system calls are usually performed through libraries. Using an API enables application
software to be ported easily, through recompilation, to other systems that support the same API.

TheOperatingSystemasResourceManager

A computer is a set of resources for the movement, storage, and processing of data and for the control of

these functions. The OS is responsible for managing these resources.

Bymanagingthecomputer’sresources,theOSisincontrolofthecomputer’sbasic functions

ThemainresourcesthataremanagedbytheOS.AportionoftheOSisinmainmemory.Thisincludesthe

kernel,ornucleus,whichcontainsthemostfrequentlyusedfunctionsintheOSand,atagiventime,other
portionsoftheOScurrentlyinuse.Theremainderofmainmemorycontainsuserprogramsanddata.

The memory management hardware in the processor and the OS jointly control the allocation of main

memory, as we shall see. The OS decides when an I/Odevice can be used by a program in executionand

controlsaccesstoanduseoffiles.Theprocessoritselfisaresource,andtheOSmustdeterminehow much processor
time is to be devoted to the execution of a particular user program. In the case of a multiple- processor

system, this decision must span all of the processors.

EaseofEvolutionofanOperating System

AmajorOSwillevolveovertimeforanumberofreasons:

• Hardwareupgradesplusnewtypesof hardware

• Newservices

• Fixes

OPERATINGSYSTEMOPERATIONS

Modern operating systems are interrupt driven. If there are no processes to execute, OS will sit idle and
wait for some event to happen. Interrupts could be hardware interrupts or software interrupts. The OS is

designedtohandleboth.Atrap(oranexception)isasoftwaregeneratedinterruptcausedeitherbyanerror

(e.g.dividebyzero)orbyaspecificrequestfromauserprogram.Aseparatecodesegmentiswritten in the OS to

handle different types of interrupts. These codes are known as interrupt handlers/ interrupt service routine.
A properly designed OS ensures that an illegal program should not harm the execution of other programs.

To ensure this, the OS operates in dual mode.

Dualmodeofoperation

The OS is design in such a way that it is capable of differentiating between the execution of OS code and

userdefinedcode.ToachievethisOSneedtwodifferentmodesofoperationsthisistherebycontrolledby mode bit

added to hardware of computer system as shown in Table 4.

ModeType Definition Mode Bit Examples

User Mode UserDefinedcodesareexecuted ModeBit=1 Creation of word document or in

generaluserusinganyapplication

program

KernelMode OSsystemcodesareexecuted

(also known as supervisor,

system, or privileged mode)

ModeBit=0 Handling interrupts-Transferring

controlofaprocessfromCPUtoI/O on

request

UserandKernelModeofOperatingSystem

Transition from User to Kernel mode

When a user application is executing on the computer system OS is working in user mode. On signal of
system call via user application, the OS transits from user mode to kernel mode to service that request as

shown in Fig. 11.

Transitionfromusertokernelmode

Whentheuserstartsthesystemthehardwarestartsinmonitor/kernelmodeandloadstheoperatingsystem. OS has

the initial control over the entire system, when instructions are executed in kernel mode. OS then starts

the user processes in user mode and on occurrence of trap, interrupt or system call again switch to
kernelmodeandgainscontrolofthesystem.Systemcallsaredesignedfortheuserprogramsthroughwhich user

can ask OS to perform tasks reserved for operating system. System calls usually take the form of the

trap.OncetheOSservicetheinterruptittransferscontrolbacktouserprogramhenceusermodebysetting mode

bit=1.

BenefitsofDualMode

The dual mode of operation protects the operating system from errant users, and errant users from one
anotherbydesignatingsomeofthemachineinstructionsthatmaycauseharmasprivilegedinstructions.

Theseinstructionscanexecuteonlyinkernelmode.Ifanattemptismadetoexecuteaprivilegedinstruction in user

mode, the hardware does not execute the instruction, but rather treats the instruction as illegal and traps to

the operating system. Examples of privileged instructions:

1. Switchingtokernel mode

2. ManagingI/Ocontrol
3. TimerManagement

4. InterruptManagement

Timer

SinceOS operatesindualmodeit shouldmaintain control over CPU. Thesystem shouldnot allowa user

application:

1. Tobestuckinaninfinite loop
2. Tofailtocallsystem services

3. NeverreturncontroltotheOS
Toachievethisgoal,wecanusetimer.Thistimercontrolmechanismwillinterruptthesystemataspecified period;

thereby preventing user program from running too long. This can be implemented either as fixed timer or

variable timer

AdditionalTopics

VirtualMachines(VM)

Virtualization technology enables a single PCor server to simultaneously run multiple operating systems

or multiple sessions of a single OS

A machinewithvirtualizationsoftwarecanhostnumerous applications,includingthosethatrunon different

operating systems, on a single platform

The host operating system can support a number of virtual machines, each of which has the
characteristics of a particular OS

Thesolutionthat enablesvirtualizationisavirtualmachinemonitor(VMM),orhypervisor

Avirtual machinetakesthelayeredapproachtoitslogicalconclusion.Ittreatshardwareandtheopera with its

own (virtual) memory.

Theresourcesofthephysicalcomputeraresharedtocreatethevirtualmachines.

1. CPUschedulingcancreatetheappearancethatusershavetheirownprocessor.

2. Spoolingandafilesystemcanprovidevirtualcardreadersandvirtualline printers.

3. Anormalusertime-sharingterminalservesasthevirtualmachineoperator’sconsole.

Advantages/DisadvantagesofVirtualMachines

Thevirtual-machineconceptprovidescompleteprotectionofsystemresourcessinceeachvirtual machine is

isolated from all other virtual machines.

Thisisolation,however,permitsnodirectsharingofresources.

Avirtual-machinesystemisaperfectvehicleforoperating-systemsresearchanddevelopment.System

development is done on the virtual machine, instead of on a physical machine and so does not disrupt

normal system operation.

Thevirtualmachineconceptisdifficulttoimplementduetotheeffortrequiredtoprovideanexact duplicate to

the underlying machine.

1

PROCESSCONCEPTS

CS6401-OPERATINGSYSTEMS

UNITII PROCESSMANAGEMENT

Processes-ProcessConcept,ProcessScheduling,OperationsonProcesses, Interprocess

Communication;Threads-Overview,MulticoreProgramming,MultithreadingModels;

Windows7-ThreadandSMPManagement.ProcessSynchronization -CriticalSection

Problem, Mutex Locks, Semophores, Monitors; CPU Scheduling and Deadlocks.

ProcessConcept

Aprocesscanbethoughtofasaprogramin execution.

Aprocessistheunitoftheunitofworkin amoderntime-sharingsystem.

Aprocessismorethantheprogramcode,whichissometimesknownasthetextsection. It also

includes the current activity, as represented by the value of the programcounter and

the contents of the processor’s registers.

Aprocessgenerallyalsoincludestheprocessstack,whichcontainstemporarydata(such

asfunctionparameters,returnaddresses,andlocalvariables),anda datasection,which

contains global variables. A process may also include a heap, which is memory that is

dynamically allocated during process run time.

Differencebetweenprogramand process

A program is a passive entity, such as the contents of a file stored on disk, whereas a

process is an active entity, with a program counter specifying the next instruction to

execute and a set of associated resources.

ProcessControlBlock(PCB)

Eachprocessis representedintheoperatingsystembyaprocess control block (PCB)-

also called a task control block.

APCBdefinesaprocesstotheoperatingsystem.

Itcontainstheentireinformationaboutaprocess. Some

of the information a PCB.

Process state: The state may be new, ready, running, and waiting, halted,

and SO on.

Program counter: The counter indicates the address of the next

instruction to be executed for this process.

CPU registers: The registers varyin number and type, depending

on the computer architecture.

CPU-schedulinginformation:Thisinformationincludesaprocess priority,

pointers to scheduling queues, and any other

schedulingparameters.

Memory-managementinformation:Thisinformationmayincludesuch

informationasthevalueofthebaseandlimitregisters,thepagetables,or the

segment tables, depending on the memory system used by the operating

system.

Accountinginformation:Thisinformationincludestheamount

2

of CPU and real time used, time limits, account numbers, job or process numbers, and

so on.

Status information: The information includes the list of I/Odevices allocated to this

process, a list of open files, and so on.

ProcessStates:

 Asaprocessexecutes,itchangesstate.
 The stateofa process is defined inpartbythecurrentactivityofthatprocess.

 Each process may be in one of the following states:

 New:Theprocessisbeingcreated.

 Running:Instructionsarebeingexecuted.

Waiting:Theprocessiswaitingforsomeeventtooccur(suchasan I/O

completion or reception of a signal).

 Ready:Theprocessiswaitingtobeassigned toaprocessor.

 Terminated:Theprocesshasfinishedexecution.

3

Anewprocessisinitiallyputinthereadyqueue.Itwaitsinthereadyq

Oncetheprocessisassignedto theCPUand isexecuting,oneofseveraleven

PROCESSSCHEDULING

DiagramshowsCPUswitchfromprocesstoprocess.

Theobjectiveofmultiprogrammingistohavesomeprocessrunningatall times, so

as to maximize CPU utilization.

SchedulingQueues

Thereare3typesofschedulingqueues.Theyare:

1. Job Queue

2. ReadyQueue
3. DeviceQueue

Asprocessesenterthesystem,theyareputinto ajob queue.

The processes that are residing in main memory and are ready and waiting to

executeare kept on a list called the ready queue.

ThelistofprocesseswaitingforanI/Odeviceiskeptinadevicequeueforthat particular

device.

ueueuntilitisselectedfor ts

could occur:

TheprocesscouldissueanI/Orequest,andthenbeplacedinan I/O queue.

 Theprocesscouldcreateanewsubprocessandwaitforits

4

termination.

TheprocesscouldberemovedforciblyfromtheCPU,asaresultof aninterrupt,

and be put back in the ready Queue.

Acommonrepresentationofprocessschedulingisaqueueingdiagram.

Schedulers

 Theoperatingsystemmustselect,forschedulingpurposes,processesfrom thesequeues in

some order

 Theselectionprocessiscarriedoutbytheappropriatescheduler.

Theyare:

1. Long-termSchedulerorJobScheduler

2. Short-termSchedulerorCPUScheduler

3. MediumtermScheduler

Long-TermScheduler

 Thelong-termscheduler,orjobscheduler,selectsprocessesfromthispoolandloads

themintomemoryforexecution.Itisinvokedveryinfrequently.Itcontrolsthedegree of

multiprogramming.

Short-TermScheduler
 Theshort-termscheduler,orCPUscheduler,selectsfromamongthe

processesthatarereadytoexecute,andallocatestheCPUtooneofthem.Itisinvoked very

frequently.

 ProcessescanbedescribedaseitherI/OboundorCPUbound.

 An I\O-bound process spends more of its time doing I/O than it spends doing

computations.

 ACPU-boundprocess,ontheotherhand,generatesI/Orequestsinfrequently, using

more of its time doing computation than an I/O-bound

processuses.
 The system with the best performance will have a combination of CPU- bound

and I/O-bound processes.

MediumTermScheduler

 Someoperatingsystems,suchastime-sharingsystems,mayintroduceanadditional,

intermediate level of scheduling.

 The key idea is medium-term scheduler, removes processes from memory and thus

reduces the degree of multiprogramming.

5

OPERATIONSONPROCESS

 Atsomelatertime,theprocesscanbereintroducedintomemoryanditsexecution can be

continued where it left off. This scheme is called swapping.

ContextSwitching

theCPU toanotherprocessrequiressaving thestateof theold process

andloadingthesavedstateforthenewprocess.Thistaskisknownasacontext switch.

Context-switchtimeispure overhead,becausethe systemdoesnousefulwork while

switching.

Its speed varies from machine to machine, depending on the memory speed,the

numberofregistersthatmustbecopied,andtheexistenceofspecial instructions.

1. ProcessCreation

Aprocessmaycreateseveralnewprocesses,duringexecution.

The creating process is called a parent process, whereas the new processes are

calledthe children of that process.

Whenaprocesscreatesanewprocess,twopossibilitiesexistintermsof execution:

1. Theparentcontinuestoexecuteconcurrentlywithitschildren.

2. Theparentwaitsuntilsomeorallofitschildrenhaveterminated.

Therearealsotwopossibilitiesintermsoftheaddressspaceofthenewprocess:

1. Thechildprocessisaduplicateoftheparent process.

6

2. Thechildprocesshasaprogramloadedintoit.

In UNIX, each process is identified by its process identifier, which isa

uniqueinteger. A new process is created by the fork system call.

AtreeofprocessesonatypicalLinuxsystem.

wesee twochildrenofinit—kthreaddandsshd.

The kthreadd process is responsible for creating additional processes that perform tasks on

behalf of the kernel (in this situation, khelper and pdflush).

Thesshdprocessisresponsibleformanagingclientsthatconnecttothesystembyusingssh (which is

short for secure shell). The login process is responsible for managing clients that directly log

onto the system.

In general, when a process creates a child process, that child process will need certain

resources (CPU time, memory, files, I/O devices) to accomplish its task.

A child process may be able to obtain its resources directly from the operating system, or it

may be constrained to a subset of the resources of the parent process.

The parent may have to partition its resources among its children, or it may be able to share

some resources (such as memory or files) among several of its children. Restricting a child

processtoasubsetoftheparent’sresourcespreventsanyprocessfromoverloadingthesystem by

creating too many child processes.

2. ProcessTermination

A process terminates when it finishes executing its final statement and asksthe

operating system to delete it by using the exit system call.

Atthatpoint,theprocessmayreturndata(output)toitsparentprocess(viathewait

systemcall).

Aprocesscan causetheterminationofanotherprocessvia an appropriatesystem call.

A parent may terminate the execution of one of its children for a variety of reasons,

such as these:

1. The child has exceeded its usage of some of the resources that it

hasBeen allocated.

7

CO-OPERATINGPROCESS

INTERPROCESSCOMMUNICATION

2. Thetaskassigned tothechildisnolongerrequired.

3. Theparentisexiting,andtheoperatingsystemdoesnotallowachildtocontinue

ifitsparentterminates.Onsuchsystems,ifaprocessterminates(eithernormally

orabnormally),thenallits children must also be term i nat ed. Thisphenome

non,referredtoascascadingtermination,isnormallyinitiated by the operating system.

Whenaprocessterminates,itsresourcesarede-allocatedbytheoperatingsystem.

Aprocessthathasterminated,butwhoseparenthasnotyetcalledwait(),isknownasazombie process.

Nowconsiderwhatwouldhappenifaparentdidnotinvokewait()andinsteadterminated, thereby

leaving its child processes as orphans.

Processesexecutingconcurrentlyintheoperatingsystem maybeeitherindependentprocesses

orcooperating processes.

Aprocessisindependentifitcannotaffectorbeaffectedbytheotherprocessesexecutinginthe system.

Any process that does not share data with any other process is independent.

Aprocessiscooperatingifitcanaffectorbeaffectedbytheotherprocessesexecutinginthe system.

Clearly, any process that shares data with other processes is a cooperating process.

Thereareseveralreasonsforprovidinganenvironmentthatallowsprocesscooperation:

• Information sharing. Since several users may be interested in the same piece of information

(forinstance,asharedfile),wemustprovideanenvironmenttoallowconcurrent accesstosuch

information.

• Computation speedup. If we want a particular task to run faster, we must break it into

subtasks,eachofwhichwillbeexecutinginparallelwiththeothers.Noticethatsuchaspeedup can be

achieved only if the computer has multiple processing cores.

• Modularity.Wemaywanttoconstructthesysteminamodularfashion,dividingthesystem

functions into separate processes or threads.

• Convenience.Evenanindividualusermayworkonmanytasksatthesametime.Forinstance, a user

may be editing, listening to music, and compiling in parallel.

Cooperating processes require an Inter Process Communication (IPC) mechanism that will

allow them to exchange data and information. There are two fundamental models of interprocess

communication: shared memory and message passing.

8

In the shared-memory model, a region of memory that is shared by cooperating processes is

established. Processes can then exchange information by reading and writing data to the shared

region.

In the message-passing model, communication takes place by means

ofmessagesexchangedbetween the cooperating processes.

(a)Messagepassing. (b)Sharedmemory.

Shared-MemorySystems

Interprocesscommunicationusingsharedmemoryrequirescommunicating

processes to establish a region of shared memory.

Other processes that wish to communicate using this shared-memory segment must attach it

totheir address space.

Messagepassing

Messagepassingprovidesamechanismtoallowprocessestocommunicateandtosynchronize their

actions without sharing the same address space.

1. BasicStructure:

IfprocessesPandQwanttocommunicate,theymustsendmessagestoandreceive messages

from each other; a communication link must exist between them.

Physicalimplementationofthelinkisdonethroughahardwarebus, network etc,

There are several methods for logically implementing a link and the

operations:

2. Naming

1. Directorindirectcommunication

2. Symmetricorasymmetriccommunication

3. Automaticorexplicitbuffering

4. Sendbycopyorsend byreference

5. Fixed-sizedorvariable-sized messages

9

Processesthatwanttocommunicatemusthaveawaytorefertoeachother.

10

Theycanuseeitherdirect orindirectcommunication.

1. DirectCommunication

Eachprocessthat wants to communicate must explicitlyname therecipientor

sender of the communication.

Acommunicationlinkinthisschemehasthefollowingproperties:

i. Alinkisestablishedautomaticallybetweeneverypairofprocesses that

wanttocommunicate.Theprocessesneedto know only each other's identity

to communicate.

ii. Alinkisassociatedwithexactlytwo processes.

iii. Exactlyonelinkexistsbetweeneachpairofprocesses.

There are two ways of addressing namely

Symmetry in addressing

Asymmetryinaddressing

In symmetry in addressing, the sendandreceive primitivesare definedas: send(P,

message) Send a message to process P

receive(Q,message) ReceiveamessagefromQ

Inasymmetryinaddressing,thesend&receiveprimitivesare defined as:

send(p,message)sendamessagetoprocesspreceive(id, message)

receive message from any process

2. IndirectCommunication

Withindirectcommunication,themessagesaresenttoandreceivedfrom mailboxes, or

ports.

Thesendandreceiveprimitivesaredefinedasfollows:

send (A, message) SendamessagetomailboxA.receive

(A, message) Receive a message from mailbox A.

Acommunicationlinkhasthefollowingproperties:

i. Alinkisestablishedbetweenapairofprocessesonlyifbothmembers of the

pair have a shared mailbox.

ii. Alinkmaybeassociatedwithmorethantwoprocesses.

iii. Anumberofdifferentlinksmayexistbetweeneachpairofcommunicatingproc

esses,witheachlinkcorrespondingtoonemailbox.

3. Buffering

Alinkhassomecapacitythatdeterminesthenumberofmessagethat

canreside in it temporarily. This propertycan be viewed as a queue of messages

attached to the link.

Therearethreewaysthat such aqueuecanbeimplemented.

Zero capacity : Queue length of maximum is 0. No message is

waitinginaqueue.Thesendermustwaituntiltherecipientreceivesthemessage.

Bounded capacity: The queue has finite length n. Thus at most n

messages can reside in it.

Unboundedcapacity:Thequeuehaspotentiallyinfinitelength.Thus any

number of messages can wait in it. The sender is never delayed

4. Synchronization

Messagepassingmaybeeitherblockingornon-blocking.

11

THREADS

MULTITHREADING

1. BlockingSend -Thesenderblocksitselftillthemessagesentbyitis received by

the receiver.

2. Non-blocking Send - The sender does not block itself after

sendingthe message but continues with its normal operation.

3. BlockingReceive-Thereceiverblocksitselfuntilitreceivesthe message.

4. Non-blockingReceive–Thereceiverdoesnotblockitself.

Thread

AthreadisabasicunitofCPUutilization;itcomprisesathread ID,aprogramcounter,aregister set, and a

stack.

It shares with other threads belonging to the same process its code section, data section, and

otheroperating-systemresources,suchasopenfilesandsignals.Traditional(orheavyweight) process

has a single thread of control.

Ifaprocess hasmultiplethreads ofcontrol,it canperformmorethanonetask at atime.

Motivation

Mostsoftwareapplicationsthatrunonmoderncomputersaremultithreaded.Anapplication typically is

implemented as a separate process with several threads of control.

Aweb browser might haveonethreaddisplayimages ortext whileanotherthread retrieves data from

the network.

A word processor may have a thread for displaying graphics, another thread for responding to

keystrokesfromtheuser, andathirdthreadforperformingspellingandgrammarcheckinginthe

background.

Multithreadingistheabilityofaprogramoranoperatingsystemprocesstomanageitsuseby more than

one user at a time and to even manage multiple requests by the same user without having to

have multiple copies of the programming running in the computer.

12

Benefits

Therearefourmajorcategoriesofbenefitstomulti-threading:

1. Responsiveness-Onethreadmayproviderapidresponsewhileotherthreadsareblocked or

slowed down doing intensive calculations.

2. Resourcesharing-Bydefaultthreadssharecommoncode,data,andotherresources,

whichallowsmultipletaskstobeperformedsimultaneouslyinasingleaddressspace.

3. Economy-Creatingandmanagingthreads(andcontextswitchesbetweenthem)is much

faster than performing the same tasks for processes.

4. Scalability, i.e. Utilization of multiprocessor architectures - A single threaded

processcanonlyrunononeCPU,nomatterhowmanymaybeavailable,whereastheexecutionof a

multi-threaded application may be split amongst available processors

MultithreadingModels

1. Many-to-One

2. One-to-One

3. Many-to-Many

1. Many-to-One:

Many to one model maps many user level threads

tooneKernellevelthread.Threadmanagement is done inuser

space. When thread makes a blocking system call, the entire

process will be blocks. Only one thread can access the Kernel

at a time,so multiple threads are unable to run in parallel on

multiprocessors.

If the user level thread libraries are implemented in the

operatingsysteminsuchaway that systemdoesnotsupport them

then Kernel threads use the many to one relationship modes.

2. One-to-One:

Thereisonetoonerelationshipofuserlevel thread to

the kernel level thread.

This modelprovidesmoreconcurrencythan

the many to one model.

Italsoanotherthreadtorunwhenathread

13

THREADINGISSUES:

makes a blocking system call. It supports multiplethreadtoexecuteinparallel on

microprocessors.

3. Many-to-ManyModel:

In this model, many user level threads multiplexes to

theKernelthreadofsmalleror equal numbers.

ThenumberofKernelthreadsmaybespecifictoeither a

particularapplicationoraparticular machine.

Inthismodel,developerscancreateasmanyuserthreads as

necessary and the corresponding Kernel threads can run

inparallels on a multiprocessor.

1. fork()and exec()systemcalls.

Afork ()system call mayduplicateall threads orduplicateonlythethread that invoked

fork().

If a thread invoke exec() system call ,the program specified in the parameter to exec will

replace the entire process.

2. Threadcancellation.

Itis thetask ofterminatingathread beforeit has completed .Athread that

is to be cancelled is called a target thread.

Therearetwotypesofcancellationnamely

1. Asynchronous Cancellation– One thread immediately terminatesthe target

thread.

2. Deferred Cancellation – The target thread can periodically check if it should

terminate , and does so in an orderly fashion.

3. Signalhandling

1. Asignalis aused tonotifyaprocessthataparticulareventhasoccurred.

2. Ageneratedsignalisdeliveredtotheprocess.

a. Deliverthesignaltothethreadtowhichthesignalapplies.b. Deliver the

signal to every thread in the process.

c. Deliverthesignaltocertainthreadsintheprocess.

d. Assignaspecificthreadtoreceiveallsignals fortheprocess.

3. Oncedeliveredthesignalmustbehandled.a.

Signalishandledby

i. Adefaultsignalhandler

ii. Auserdefinedsignal handler

4. Threadpools

 CreationofunlimitedthreadsexhaustsystemresourcessuchasCPUtimeor memory.
Hencewe use a thread pool.

 In a thread pool , a number of threads are created at process startup and placed in

the pool.

 Whenthereisa needforathreadtheprocesswillpick athreadfrom thepooland assign it a

task.

14

MULTICOREPRORGAMMING

 Aftercompletionofthetask,thethreadisreturnedtothepool.

5. Threadspecificdata

Threads belonging to aprocess share the data of the process. However each thread

mightneed its own copy of certain data known as thread-specific data.

Single-CPUsystemsevolvedintomulti-CPUsystems.Amorerecent,similartrendinsystem design is to

place multiple computing cores on a single chip.

Eachcoreappearsasaseparateprocessortotheoperatingsystem.Whetherthecoresappearacross CPU

chips or within CPU chips, we call these systems multicore or multiprocessor systems.

Multithreadedprogrammingprovidesamechanismformoreefficientuseofthesemultiple computing

cores and improved concurrency.

Asystemisparallelifitcanperformmorethanonetasksimultaneously.

Aconcurrentsystemsupportsmorethanonetaskbyallowingallthetaskstomakeprogress.Thus, it is

possible to have concurrency without parallelism.

In general,fiveareaspresent challengesinprogrammingformulticoresystems:

1. Identifying tasks. This involves examining applications to find areas that can be divided into

separate, concurrent tasks.

2. Balance.Whileidentifyingtasksthatcanruninparallel,programmersmustalsoensurethat the

tasks perform equal work of equal value.

3. Datasplitting.Justasapplicationsaredividedintoseparatetasks,thedataaccessedand manipulated

by the tasks must be divided to run on separate cores.

15

PROCESSSYNCHRONIZATION

THECRITICAL-SECTIONPROBLEM

4. Datadependency.Thedataaccessedbythetasksmustbeexaminedfordependenciesbetween two or

more tasks. When one task depends on data from another, programmers must ensure that the

execution of the tasks is synchronized to accommodate the data dependency.

5. Testing and debugging. When a program is running in parallel on multiple cores, many

different execution paths are possible. Testing and debugging such concurrent programs is

inherently more difficult than testing and debugging single-threaded applications.

TypesofParallelism

Ingeneral,therearetwotypesofparallelism:dataparallelismandtaskparallelism.

Dataparallelismfocusesondistributingsubsetsofthesamedataacrossmultiplecomputing cores and

performing the same operation on each core.

Taskparallelisminvolvesdistributingnotdatabuttasks(threads)acrossmultiplecomputing cores.

□ Concurrentaccesstoshareddatamayresult indatainconsistency.

□ Maintaining data consistency requires mechanisms to ensure the orderly execution

ofcooperating processes.

□ Shared-memorysolution to bounded-butterproblem allows at most n–1items in bufferat the

same time. A solution, where all N buffers are used is not simple.

□ Suppose that we modify the producer-consumer code by adding a variable counter, initialized

to 0 and increment it each time a new item is added to the buffer

□ Racecondition:Thesituationwhereseveralprocessesaccess –andmanipulateshareddata

concurrently. The final value of the shared data depends upon which process finishes last.

□ Topreventraceconditions, concurrentprocesses must besynchronized.

Definition:Eachprocesshasasegmentofcode,calledacriticalsection(CS),inwhichthe process may

be changing common variables, updating a table, writing a file, and so on.

hat, when one process is executing in its CS, no other

process is to be allowed to execute in its CS.

mplementingthis

request is the entry section.

16

exitsection

MUTEXLOCKS

RequirementstobesatisfiedforaSolutiontotheCritical-Section Problem:

1. Mutual Exclusion - If process Pi is executing in its critical section, then no other

processes can be executing in their critical sections.

2. Progress-Ifnoprocessisexecutinginitscriticalsectionandthereexistsomeprocesses

thatwishtoentertheircriticalsection,thentheselectionoftheprocessesthatwillenter

thecriticalsectionnextcannotbe

postponedindefinitely.

3. Bounded Waiting - A bound must exist on the number of times that other

processesareallowedtoentertheircriticalsectionsafteraprocesshas made a

request to enter its critical section and before that requestis granted.

GeneralstructureofprocessPi

{

entry section

criticalsection

remaindersection

} while(1);

Twogeneralapproachesareusedtohandlecriticalsectionsinoperatingsystems:preemptive kernels

and nonpreemptive kernels.

□ Apreemptivekernelallowsaprocesstobepreempted whileitisrunninginkernelmode.

□ A non-preemptive kernel does not allow a process running in kernel mode to be preempted; a

kernelmodeprocesswillrununtilitexitskernelmode,blocks,orvoluntarilyyieldscontrolofthe CPU.

-systems designers build software tools to solve the critical-section problem.

Thesimplest of these tools is the mutex lock.

trace conditions.

whenitexitsthecritical section.

Solutiontothecritical-sectionproblemusingmutexlocks.

17

SEMAPHORES

do {

acquire lock

critical section

release lock

remaindersection

}while(true);

or not.

unavailable.

isavailable,acalltoacquire()succeeds,andthelockisthenconsidered

acquire()

{

while(!available);/*busywait*/

available = false;;

}

release()

{

available=true;

}

oftenimplementedusingone ofthehardwaremechanisms.

Disadvantageoftheimplementationgivenhereisthatitrequiresbusywaiting. must

loop continuously in the call to acquire().

waitingforthelocktobecome available.

single CPU is shared among many processes. Busy waiting wastes CPU cycles that some other

process might be able to use productively.

twostandardatomic operations:

wait()and

signal().

wasoriginallycalledV(fromverhogen,“toincrement”).

18

wait(S)

{

while(S<=0);//busywait S--

;

}

signal(S)

{

S++;

}

SemaphoreUsage

binarysemaphorecanrangeonlybetween0and1.

esimilarlytomutexlocks.

providing mutual exclusion.

numberofinstances.

wait() operationon thesemaphore

(thereby decrementing the count).

signal()operation (incrementing the count).

processesthatwishto usearesourcewillblockuntil thecountbecomesgreaterthan0

vevarioussynchronization problems.

with a statement S2. Suppose we require that S2 be executed only after S1 has completed. We

can implement this scheme readily by letting P1 and P2 share a common semaphore synch,

initialized to 0. In process P1, we insert the statements

S1;

signal(synch);

InprocessP2,weinsertthestatements

wait(synch);
S2;

asinvokedsignal(synch),

which is after statement S1 has been executed.

SemaphoreImplementation

19

signal() operations as follows: When a process executes the wait() operation and finds that the

semaphore value is not positive, it must wait.

thestateoftheprocessisswitched tothewaiting state.

processexecutesasignal()operation.

state to the ready state.

therunningprocesstothenewlyreadyprocess,dependingontheCPU-scheduling algorithm.)

typedefstruct

{
intvalue;

structprocess *list;

}semaphore;

tofprocesseslist.

A signal() operation removesone process from the list of waiting processes and awakens

thatprocess.

wait(semaphore*S)

{

S->value--;

if(S->value< 0)

{

addthisprocesstoS->list;

block();

}

}

signal(semaphore*S)

{

S->value++;

if(S->value<=0)

{

removeaprocessPfromS->list; wakeup(P);

}

20

}

heblock()operationsuspendstheprocess thatinvokesit.

Deadlocksand Starvation

ormoreprocessesarewaitingindefinitelyforaneventthatcanbecausedonlybyoneofthe waiting

processes

.

twosemaphores,SandQ,settothevalue 1:

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

. . ..

. . ..

. . ..

signal(S); signal(Q);

signal(Q); signal(S);

mustwaituntilP1executessignal(Q).

andP1,eachaccessing

).When P0executeswait(Q), it

fprocessesisinadeadlockedstatewheneveryprocessinthesetiswaiting for an

event that can be caused only by another process in the set.

processeswaitindefinitelywithinthesemaphore. semaphore

in LIFO (last-in, first-out) order.

PriorityInversion

-priorityprocessneedstoreadormodifykernel

data that are currently being accessed by a lower-priority process—or a chain of lower-priority

processes.

The kerneldataaretypically protectedwitha lock,the higher-priority processwillhave to wait for

a lower-priority one to finish with the resource.

21

-priorityprocessispreemptedinfavor

22

CLASSICPROBLEMSOFSYNCHRONIZATION

ofanotherprocess with ahigher priority.

re than two

priorities, so one solution is to have only two priorities.

-inheritanceprotocol.

Accordingtothisprotocol,allprocessesthatareaccessingresourcesneededbyahigher-priority process

inherit the higher priority until they are finished with the resources in question.

priority-inheritance protocol would allow process L to temporarily inherit the priority of

process.

1. BoundedBufferProblem

2. ReaderWriterProblem

3. DiningPhilosopher'sProblem

TheBounded-BufferProblem

ofholdingoneitem.Themutex

semaphoreprovidesmutualexclusionforaccessestothebufferpoolandisinitializedtothevalue 1.

value n.

Theproducerandconsumerprocessessharethefollowingdatastructures: int

n;

semaphoremutex=1;

semaphoreempty=n;

semaphore full = 0

Thestructureoftheproducerprocess.

do {

. . .

/*produceanitemin nextproduced*/

. . .

wait(empty);

wait(mutex);

. . .

/*addnextproducedto thebuffer*/

. . .

signal(mutex);

signal(full);

23

}while(true);

Thestructureoftheconsumerprocess.

do {

wait(full);

wait(mutex);

. . .

/*removeanitemfrombuffertonextconsumed*/

. . .

signal(mutex);

signal(empty);

. . .

/*consumetheitemin nextconsumed */

. . .

}while(true);

consumerproducingemptybuffersfortheproducer.

ReaderWriterProblem

TheR-Wproblemisanotherclassicproblemforwhichdesignofsynchronizationandconcurrency

mechanisms can be tested. The producer/consumer is another such problem; the dining

philosophers is another.

Definition

 Thereisadataareathat issharedamonganumberof processes.

 Anynumberofreadersmaysimultaneouslywriteto the data area.

 Onlyone writerat atimemaywriteto thedataarea.

 Ifawriteriswritingtothedataarea,noreadermayread it.

 Ifthereisatleastonereaderreadingthedata area,nowritermaywriteto it.

 Readersonlyread andwritersonlywrite

 Aprocessthatreadsandwritestoadataareamustbeconsideredawriter(consider producer or

consumer)

In the solution to the first readers–writers problem, the reader processes share the following data

structures:

semaphorerwmutex=1;

semaphore mutex = 1;

intread count=0;

updated.

Thestructureofawriterprocess. do

{

24

wait(rwmutex);

. . .

/*writingisperformed*/

. . .

signal(rwmutex);

}while(true);

Thestructureofareaderprocess. do

{

wait(mutex);

readcount++;

if(readcount==1)

wait(rw mutex);

signal(mutex);

. . .

/*readingisperformed*/

wait(mutex);

readcount--;

if(readcount==0) signal(rw

mutex); signal(mutex);

}while(true);

DiningPhilosophersProblem

Consider there are five philosophers sitting around a circular dining table. The dining table

hasfive chopsticks and a bowl of rice in the middle.

25

Atanyinstant,aphilosopheriseithereatingorthinking.Whenaphilosopherwantstoeat,he uses two

chopsticks - one from their left and one from their right.

Whenaphilosopherwants to think,hekeepsdown both chopsticks at theiroriginalplace.

 Whenaphilosopher thinks, hedoesnotinteractwithhis others.

 From time to time, a philosopher gets hungry and tries to pick up the two forks that

areclosest to him (the forks that are between him and his left and right neighbors).

 A philosopher may pick up only one fork at a time. Obviously, he cannot pick up a fork

that is already in the hand of a neighbor.

 When a hungryphilosopher has both his forks at the same time, he eats without releasing

his forks.

 Whenheis finishedeating, heputs downboth ofhis forksand startsthinking again.

Solution:

From the problem statement, it is clear that a philosopher can think for an indefinite amount of

time. But when a philosopher starts eating, he has to stop at some point of time. The philosopher

is in an endless cycle of thinking and eating.

Anarrayoffivesemaphores,stick[5],foreachofthefivechopsticks. The

code for each philosopher looks like:

while(TRUE){

wait(stick[i]);

wait(stick[(i+1)%5]);//mod isusedbecauseifi=5, next

//chopstickis 1(diningtableis circular)

/* eat */

signal(stick[i]);

signal(stick[(i+1)%5]);

/* think */

}

Whenaphilosopherwantstoeattherice,hewillwaitforthechopstickathisleftandpicksupthat

chopstick.Thenhewaitsfortherightchopsticktobeavailable,andthenpicksittoo.Aftereating, he puts

both the chopsticks down.

But if all five philosophers are hungry simultaneously, and each of them pickup one chopstick,

then a deadlock situation occurs because they will be waiting for another chopstick forever.

Thepossiblesolutions forthis are:

1) A philosopher must be allowed to pick up the chopsticks only if both the left and right

chopsticks are available.

2) Allowonlyfourphilosopherstosit atthetable.Thatway,ifallthefourphilosopherspick up four

chopsticks, there will be one chopstick left on the table. So, one philosopher can start

eating and eventually, two chopsticks will be available. In this way, deadlocks canbe

avoided.

26

Definition:Monitoris ahigh-level languageconstruct with acollectionof procedures,variables, and

data structures that are all grouped together in a special kind of module or package.

directly access the monitor's internal data structures from procedures declared outside the

monitor.

onlyoneprocesscan beactivein a monitorat anyinstant.

MonitorUsage

chievingmutualexclusion:

-definedoperationsthatareprovidedmutual

exclusion within the monitor.

s the declaration of variables whose values define the state of an

instance of that type, along with the bodies of procedures or functions that operate on those

variables.

monitormonitor name

{

/*sharedvariabledeclarations*/

function P1 (. . .) {

. . .

}

functionP2 (...) {

. . .

}

.

.

functionPn (...) {

. . .

}

initializationcode(.. .) {

. . .

}

}

procedure defined within a monitor can accessonly those variables declared locally within

themonitor and its formal parameters.

blesofamonitorcan beaccessed byonlythe local procedures.

MONITORS

27

28

Schematicviewof aMonitor

Themonitorconstructisnotsufficientlypowerfulformodelingsomesynchronizationschemes.

mechanisms are provided by the condition construct condition x, y;

Theonlyoperationsthatcanbeinvokedonaconditionvariablearewait()andsignal().The operation

x.wait();

means that the process invokingthis operation is suspended until anotherprocess invokes

x.signal();

Thex.signal()operationresumesexactlyonesuspendedprocess.

Amonitorsolutiontothedining-philosopherproblem.

monitorDiningPhilosophers

{

enum{THINKING,HUNGRY,EATING}state[5];

conditionself[5];

voidpickup(inti)

{

state[i]=HUNGRY;

test(i);

if(state[i]!=EATING)

self[i].wait();

}

voidputdown(int i)

{

state[i]=THINKING;

test((i + 4) % 5);

29

CPUSCHEDULING

test((i+1)%5);

}

void test(int i)

{

if((state[(i+4)%5]!=EATING)&&(state[i]==HUNGRY)&&(state[(i+1)%5]!= EATING))

{

state[i]=EATING;

self[i].signal();

}

}

initializationcode()

{

for(inti=0;i<5;i++) state[i]

= THINKING;

}

CPUschedulingisthebasisofmulti-programmedoperatingsystems.

ByswitchingtheCPUamongprocesses,theoperatingsystemcanmakethecomputermore productive.

BasicConcepts

 Theobjectiveofmulti-programmingistohavesomeprocessrunningatalltimes,to maximize

CPU utilization.

 ForaUni-processorsystem,therewillneverbemorethanonerunningprocess.

 Schedulingisafundamentaloperatingsystemfunction.

 Theideaof multi-programmingis to execute aprocess until it must wait, typicallyfor the

completion of some I/O request.

 TheCPUisoneoftheprimarycomputerresources.

 TheCPUschedulingiscentraltooperatingsystemdesign.

CpuScheduler

 When the CPU becomes idle, the operating system must select on of the processes in the

ready queue to be executed.

 Theselectionprocessiscarriedoutbytheshort-termscheduler(CPUscheduler)

 Theschedulerselects from amongthe processes in memorythat arereadyto execute, and

allocates the CPU to one of them.

 AreadyqueuemaybeimplementedasaFIFOqueue,apriorityqueue, atreeorsimplyan

unordered link list.

 AlltheprocessesinthereadyqueuearelinedupwaitingforachancetorunontheCPU.

CPUschedulingdecisionsmaytakeplacewhenaprocess.

1. Switchesfromrunningtowaiting state

2. Switchesfromrunningtoreadystate

3. Switchesfromwaitingto ready

30

4. Terminates

Schedulingunder1 and4is nonpreemptive.

Allotherschedulingis preemptive.

NonpreemptiveSchedulingAschedulingdisciplineisnonpreemptiveif,onceaprocesshas been

given the CPU, the CPU cannot be taken away from that process.

PreemptiveScheduling Aschedulingdisciplineispreemptiveif,onceaprocesshasbeen given

the CPU can taken away.

Dispatcher

DispatcherisamodulethatgivescontroloftheCPUtotheprocessselected bytheshort-term scheduler.

This function involves the following:

artthat program.

Dispatchlatency–Thetimetakenforthedispatchertostoponeprocessandstartanother running.

Schedulingcriteria

1. CPUutilization–keeptheCPUasbusyaspossibleThroughput–#ofprocessesthat

complete their execution per time unit .

2. Turnaroundtime–amountoftimetoexecuteaparticularprocess

3. Waitingtime–amount oftimeaprocess hasbeenwaitinginthereadyqueue

4. Responsetime–amountoftimeittakesfromwhenarequestwassubmitteduntilthe first

response is produced, not output (for time-sharing environment)

5. Throughput–Thenumberofprocessesthatcompletetheirexecutionpertimeunit.

BestAlgorithmconsider following:

Minresponsetime

Formulas to calculate Turn-around time & waiting time is:

Waitingtime=FinishingTime–(CPUBursttime+ArrivalTime)

Turnaround time = Waiting Time + Burst Time

31

SchedulingAlgorithms

AProcessSchedulerschedulesdifferentprocessestobeassignedtotheCPUbasedonparticular

scheduling algorithms.

1. First-Come,First-Served(FCFS)Scheduling

2. Shortest-Job-First(SJF) Scheduling

3. PriorityScheduling

4. Round Robin(RR)Scheduling

First-Come,First-Served(FCFS)Schedulingalgorithm.

-schedulingalgorithm.

CPUfirst.

e,itsPCBislinkedontothetailofthequeue.

runningprocessis thenremovedfromthequeue.

ExampleProblem

Considerthefollowingsetofprocessesthatarriveattime0,withthelengthoftheCPUburst time given

in milliseconds:

Supposethattheprocesses arriveintheorder:P1,P2 ,P3 TheGantt Chart:

Waiting time

me:(0 +24 +27)/3=17ms.

TurnaroundTime=WaitingTime+Burst Time

Shortest-Job-First(SJF)Scheduling

switheachprocessthelengthofitsnextCPUburst.Use these

lengths to schedule the process with the shortest time.

CPUburst.Itisalso calledasshortestnextCPUburst.

32

tobreakthetie.

Process BurstTime

P1 24

P2 3

P3 3

GanttChart

P2 P3 P1

0 3 6 30

Waiting time
ForP1=6,P2=0,P3=3

Average Waiting Time=(6+0+3)/3=3 ms.

TurnaroundTime=WaitingTime+BurstTime

TurnaroundTimeforP1=(6+24)=30,P2=(0+3)=3,P3=(3+3)=6

AverageTurnaroundTime=(30+3+6)/3=13ms

PriorityScheduling

 TheSJFalgorithm isaspecial caseofthegeneralpriority-schedulingalgorithm.

 Aprioritynumber(integer)isassociatedwitheachprocessandtheCPUisallocatedto the

process with the highest priority.

 Equal-priorityprocessesarescheduledinFCFSorder.

 TheCPUisallocatedtotheprocesswiththehighestpriority(smallestintegerºhighest

priority) .

Process BurstTime Priority

P1 24 2

P2 3 1

P3 3 3

GanttChart

P2 P1 P3

0 3 27 30

Waiting time

ForP1=3,P2=0,P3=27

Average Waiting Time=(3+0+27)/3=10ms

TurnaroundTime=WaitingTime+BurstTime

TurnaroundTimeforP1=(3+24)=27,P2=(0+3)=3,P3=(27+3)=30

AverageTurnAround Time=(27+3+30)/3=20ms.

Roundrobinscheduling

 Roundrobinschedulingisdesignedespeciallyfortime-sharing

systems.

 ItissimilartoFCFS,butpreemptionisaddedtoswitchbetween

processes.

 EachprocessgetsasmallunitofCPUtimecalledatimequantumor

33

timeslice.

 To implement RR scheduling, the ready queue is kept as a FIFO queue of processes.

New processes are added to the tail of the ready queue. The CPU scheduler picks the

first process from the ready queue, sets a timer to interrupt after 1 time quantum and

dispatches the process.

 If the CPU burst time is less than the time quantum, the process itself will release the

CPUvoluntarily.Otherwise,iftheCPUburstofthecurrentlyrunningprocessislonger

thanthetimequantumacontextswitchwillbeexecutedandtheprocesswillbe putat the tail

of the ready queue.

GanttChart

Waiting time

Average waiting time = [6+4+7]/3=17/3=5.66

Turnaround Time = Waiting Time + Burst Time

TurnaroundTimeforP1=(6+24)=30,P2=(4+3)=7,P3=(7+3)=10

AverageTurnaroundTime=(30+7+10)/3=15.6ms.

MultilevelQueueScheduling
 Itpartitionsthereadyqueueintoseveralseparatequeues.

 The processes are permanently assigned to one queue, generally based onsome

propertyoftheprocess,such asmemorysize,process priority,or processtype.

 There must be scheduling between the queues, which is commonly

implemented as a fixed-priority preemptive scheduling.

 For example the foreground queue may have absolute priorityover the

background queue.

Example:ofamultilevel queueschedulingalgorithmwithfivequeues

1. Systemprocesses

2. Interactiveprocesses

3. Interactiveeditingprocesses

4. Batchprocesses

5. Studentprocesses
Eachqueuehasabsolutepriorityoverlower-priorityqueue.

34

MultilevelFeedbackQueueScheduling

It allows a process to move between queues.

The idea is to separate processes with different CPU-burst characteristics.

IfaprocessusestoomuchCPUtime,itwillbemovedtoalower-priority queue.

This scheme leaves I/O-bound and interactive processes in the higher- priority

queues.

Similarly,aprocessthatwaitstoolonginalowerpriorityqueuemaybe moved to a higher-

priority queue.

Thisformofagingpreventsstarvation.

Example:

Consider a multilevel feedback queue scheduler with three

queues,numbered from 0 to 2 .

processesinqueue 0.

 Onlywhen queue0isemptywillitexecuteprocessesin queue1.

The

scheduler first

executes all

 Similarly,processes in queue2 will be executed only if queues0and1areempty.

Aprocessthatarrives forqueue1 willpreempt aprocessinqueue2.

 Aprocessthatarrivesforqueue0will,inturn,preemptaprocessin queue1.

35

 A multilevel feedback q u e u e scheduler is d e f i n e dbythe following

parameters:

1. Thenumberofqueues

2. Theschedulingalgorithmforeach queue

3. The method used to determine when to upgrade a process to a higher

priority queue

4. The method used to determine when to demote a process to a lower-

priority queue

5. The method used to determine whichqueueaprocesswillenter when that

process needs service

MultipleProcessorScheduling

 If multiple CPUs are available, the scheduling problem is correspondinglymore

complex.

 Ifseveralidenticalprocessorsareavailable,thenload-sharingcanoccur.

 It is possible to provide a separate queue for each processor.

 In this case however, one processor could be idle, with an

emptyqueue,whileanother processor was very busy.

 Topreventthissituation,weuseacommonreadyqueue.

 All processes go intoonequeueandarescheduledontoanyavailableprocessor.

 In such a scheme, one of two scheduling approaches may be used.

1. Self Scheduling - Each processor is self-scheduling.

Each processor examines the common ready queue and selects a process to

execute.Wemustensurethattwoprocessorsdonotchoosethesameprocess, and

that processes are not lost from the queue.

2. Master – Slave Structure - This avoids the problem by appointing one

processor as scheduler for the other processors, thus creating a master-slave

structure.

Real-TimeScheduling
Real-time computing is divided into two types.

1. Hardreal-timesystems

2. Softreal-timesystems

Hardreal-timesystems

Hard RTS are required to complete a criticaltaskwithinaguaranteed amount of

time.

Generally, a process is submitted along with a statement of the

amountof time in which it needs to complete or perform I/O.

Theschedulertheneitheradmitstheprocess,guaranteeingthatthe

process will complete on time, or rejects the request as impossible. This is

known as resource reservation.

Softreal-timesystems

 Softreal-timecomputingislessrestrictive.Itrequiresthatcriticalprocessesrecieve

36

DEAD LOCK

priorityoverlessfortunateones.

The system must have priority scheduling, and real-time processes must have the

highest priority.

 Thepriorityofreal-timeprocessesmustnotdegradeovertime,eventhoughthe priority of

non-real-time processes may.

 Dispatch latency must be small. The smaller the latency, the faster areal-time

process can start executing.

The high-priorityprocess would be waiting for a lower-priority one to finish.

Thissituationisknownaspriority inversion.

Definition:

A process request resources, if the resources are not available at that time, the process enters in

to a wait state. It may happen that waiting processes will never again change the state, because

theresourcestheyhaverequestedareheldbyotherwaitingprocesses. Thissituationiscalledas dead

lock.

SystemModel

nsists ofafinitenumberofresources tobe distributedamong anumber of

competingprocesses.

somenumberofidenticalinstances.

vices(suchasprintersandDVDdrives)areexamplesof

resource types.

Aprocessmustrequest aresourcebeforeusingitandmustreleasetheresourceafterusingit.

Underthenormalmodeofoperation,aprocessmayutilizearesourceinonlythefollowing sequence:

1. Request. The process requests the resource. If the request cannot be granted immediately then

the requesting process must wait until it can acquire the resource.

2. Use.Theprocesscanoperateonthe resource

3. Release.Theprocessreleases the resource.

DeadlockCharacterizations:-

Inadeadlock,processesneverfinishexecuting,andsystemresourcesaretiedup,preventing other jobs

from starting.

NecessaryConditionsforDeadlock:-

Adeadlocksituation canariseifthefollowingfourconditions hold simultaneouslyinasystem.

1) MUTUALEXCLUSION:-Atleastoneresourcemustbeheld inaon-sharablemode.i.eonly

37

one process can hold this resource at a time . other requesting processes should wait till it is

released.

2) HOLD&WAIT:-theremustexistaprocessthatisholdingatleastoneresourceandiswaiting to

acquire additional resources that are currently being held by other processes.

3) NO PREEMPTION:- Resources cannot be preempted, that is a resource can be released

voluntarily by the process holding it, after that process has completed its task.

4) CIRCULAR WAIT:- There must exist a set {p0,p1,p1….pn} of waiting processes such that

p0iswaitingforaresourcethatisheldbythep1, p1iswaitingfortheresourcethatisheldbythe p2…. And

so on. pn is waiting for a resource that is held by the p0.

Resource-AllocationGraph

A deadlock can be described in terms of a directed graph called system resource-allocationgraph.

• AsetofverticesVandasetofedgesE. – V

is partitioned into two types:

7P={P1,P2,…,Pn}, thesetconsistingof all theprocesses inthesystem.
7R ={R1,R2,…, Rm},theset consistingof allresource types inthesystem.

– request edge– directededgePi→ Rj

– assignmentedge–directed edgeRj→ P

Theresource-allocation graphdepicts thefollowingsituation.

Thesets P, R, and E:

R2 → P1, R3 → P3}

Resourceinstances:

Processstates:

resourcetypeR1.

→P2,

rcetypeR2andiswaitingforaninstanceof

instanceofR3.

Resource-allocationgraphwithadeadlock.

38

DEADLOCKPREVENTION

 ProcessesP1,P2,andP3aredeadlocked.ProcessP2iswaitingfortheresourceR3,which is held

by process P3. Process P3 is waiting for either process P1 or process P2 to release

resource R2. In addition, process P1 is waiting for process P2 to release resource R1.
 Wealso haveacycle:P1 → R1 → P3 → R2 →P1

 Ifthegraphcontainsnocycles,thennoprocessin thesystemis deadlocked.

Ifthegraphdoescontainacycle,thenadeadlockmayexist.

Resource-allocation graph with a cycle but no deadlock.

MethodsforHandlingDeadlocks

Wecandealwiththedeadlock problemin oneofthreeways:

1. Wecanuseaprotocoltopreventoravoiddeadlocks,ensuringthatthesystemwill never enter a

deadlocked state

2. Wecanallow thesystemto enteradeadlockedstate,detect it, and recover.

3. We canignore theproblemaltogether andpretend thatdeadlocksneveroccur inthe system.

Thethirdsolutionistheoneusedbymostoperatingsystems,includingLinux and Windows.

Deadlockpreventionprovidesasetofmethodstoensurethatatleastoneofthe necessary conditions
cannot hold.

Deadlock avoidance requiresthattheoperatingsystembegivenadditionalinformation
inadvanceconcerningwhichresourcesaprocesswill requestanduseduringits lifetime.

adeadlock.

1. MutualExclusion

– notrequiredforsharableresources; mustholdfornon-sharable resources.

– Forexample,aprinter cannotbesimultaneouslysharedbyseveralprocesses.

– Aprocessneverneedstowait forasharable resource.

39

DEADLOCKAVOIDANCE

2. Holdand Wait

– must guarantee that whenever a process requests a resource, it does not hold any other

resources.

– Oneprotocol requires eachprocess to request and beallocated all its resourcesbeforeit

begins execution,

– Oranotherprotocolallowsaprocesstorequestresourcesonly whentheprocesshas none. So,

before it can request any additional resources, it must release all the resources that it is

currently allocated.

3. DenyingNopreemption

– Ifaprocessthatisholdingsomeresourcesrequestsanotherresourcethatcannotbe

immediately allocated to it, then all resources currently being held are released.

– Preemptedresources areaddedtothelist ofresourcesforwhichtheprocessiswaiting.

– Process will be restarted only when it can regain its old resources, as well as the

newones that it is requesting.

4. DenyingCircularwait

Imposeatotalorderingofallresourcetypesandalloweachprocessto request for

resources in an increasing order of enumeration.

Let R = {R1,R2,...Rm} be the set of resource types.

Assigntoeachresourcetypeauniqueintegernumber.

IfthesetofresourcetypesRincludestapedrives,diskdrivesandprinters.

F(tapedrive)=1,

F(diskdrive)=5,

F(Printer)=12.

Eachprocesscanrequestresourcesonlyinanincreasingorderof enumeration.

abouthowresources aretoberequested.

 theresourcescurrentlyavailable,

 theresourcescurrentlyallocatedtoeachprocess,

 thefuturerequests andreleasesofeachprocess.

Adeadlock-avoidancealgorithmdynamicallyexaminestheresource-allocationstateto

ensure that a circular-wait condition can never exist.

Theresource-allocationstateisdefinedbythenumberofavailableand allocated

resources and the maximum demands of the processes.

SafeState

• When a process requests an available resource, system must decide if immediate

allocation leaves the system in a safe state.

• System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL the processes

is the systems such that for each Pi, the resources that Pi can still request can be satisfied

by currently available resources + resources held by all the Pj, with j < i.

40

• Thatis:

– IfPiresourceneedsarenotimmediatelyavailable,thenPicanwaituntilallPj have

finished.

– WhenPjisfinished,Picanobtainneededresources,execute,returnallocated

resources, and terminate.

– WhenPiterminates,Pi+1canobtainitsneededresources,andsoon.

Banker’sAlgorithm

-allocation-graphalgorithmisnotapplicabletoaresourceallocation system

with multiple instances of each resource type.

ensurethatthebankneverallocateditsavailablecashinsuchawaythatitcouldno longer satisfy

the needs of all its customers.

Multipleinstances.

Eachprocessmust apriori claimmaximumuse.

 Whenaprocessrequestsaresourceitmayhavetowait.

 Whenaprocessgets all its resourcesitmustreturnthem inafiniteamountoftime.

 Letn=numberofprocesses, andm=numberofresources types.

1. Available:indicatesthenumberofavailableresourcesofeachtype.

2. Max:Max[i,j]=kthenprocessPimayrequestatmostkinstancesof resource type

Rj

3. Allocation:Allocation[i.j]=k,thenprocessPiiscurrentlyallocated K instances

of resource type Rj

4. Need:ifNeed[i,j]=kthenprocessPimayneedKmoreinstancesof

resource type Rj ,Need [i, j]=Max[i, j]-Allocation[i, j]

Need[i,j]= Max[i,j]–Allocation [i,j].

Safetyalgorithm

1. Initializework:=availableandFinish[i]:=falsefori=1,2,3.. n

2. Findanisuchthat both

a. Finish[i]=false

b. Needi<=Work ifnosuch iexists, gotostep 4

3. work:=work+allocationi; Finish[i]:=true goto step 2

41

4. Iffinish[i]=trueforall i,then thesystemisinasafestate

Example:

GiventhefollowingstatefortheBanker’sAlgorithm.

5 processesP0throughP4

3resourcetypesA(6instances),B(9instances)andC(5instances).

Snapshot at time T0:

a) Calculatetheavailablevector.

b) CalculatetheNeedmatrix.

c) Isthesysteminasafestate? Ifso,showonesequenceofprocesseswhichallows the

system to complete. If not, explain why.

d) Giventherequest(1,2,0)fromProcessP2.Shouldthisrequestbegranted?Why or why

not?

a) Calculatetheavailablevector.

b) CalculatetheNeedmatrix.

c) Isthesysteminasafestate? Ifso,showonesequenceofprocesseswhichallows the

system to complete. If not, explain why.

42

1. Initializethe WorkandFinishvectors.

Work=Available=(1,2,0)

Finish=(false,false,false,false,false)

2. FindindexisuchthatFinish[i]=false andNeedi <=Work

3. SinceFinish[i]=trueforalli,hencethesystemisinasafestate.Thesequence of

processes which allows the system to complete is P1, P3, P2, P4, P0.

d) Giventherequest(1,2,0)fromProcessP2.Shouldthisrequestbegranted?Why or why

not?

1. CheckthatRequest2 <=Need2.

Since(1,2, 0)<=(2,3, 3),hence,thiscondition is satisfied.

2. CheckthatRequest2<=Available.

Since(1, 2,0)<=(1, 2,0), hence, thisconditionis satisfied.
3. Modifythesystem’sstateasfollows:

Available=Available–Request2 =(1,2,0)–(1,2,0)=(0,0, 0)

Allocation2 =Allocation2+Request2=(0, 3,0) +(1,2,0)= (1, 5,0)

Need2=Need2 –Request2 =(2,3, 3)–(1,2, 0)=(1, 1,3)

4. Applythesafetyalgorithmtocheckifgrantingthisrequestleavesthe

system in a safe state.

1. InitializetheWorkandFinishvectors.

Work=Available=(0,0,0)

Finish=(false,false,false, false, false)

2. Atthispoint,theredoesnotexistanindexisuchthatFinish[i]=false and

Needi <= Work.

SinceFinish[i] ≠truefor all i, hencethesystem isnot inasafe state.

Therefore,thisrequestfrom processP2shouldnotbe granted.

Resource-RequestAlgorithm

Let Requesti be the request vector for process Pi . If Requesti [j] == k, then process Pi

wants k instances of resource type Rj . When a request for resources is made by processPi

, the following actions are taken:

1. IfRequesti≤Needi,gotostep2.Otherwise,raiseanerrorcondition,sincethe process

has exceeded its maximum claim.

2. IfRequesti≤Available,gotostep3.Otherwise,Pimustwait,sincethe

resources are not available.

3. HavethesystempretendtohaveallocatedtherequestedresourcestoprocessPi by

modifying the state as follows:

Available = Available–Requesti ;

Allocationi=Allocationi+Requesti;

43

DEADLOCKDETECTION

DEADLOCKRECOVERY.

Needi=Needi–Requesti;

DeadlockDetection

(i) Singleinstanceofeachresourcetype

Ifallresourceshaveonlyasingleinstance,thenwecandefineadeadlock

detectionalgorithmthatuseavariantofresource-allocationgraphcalledawaitforgraph.

ResourceAllocationGraph WaitforGraph

(ii) SeveralInstanceofaresourcetype

Available:Numberofavailableresourcesofeachtype

Allocation:numberofresourcesofeachtypecurrentlyallocatedtoeachprocess

Request:Currentrequestofeachprocess

If Request [i,j]=k, then process Piis requesting K more instances of resource

typeRj.

1. Initializework:=available

Finish[i]=false,otherwisefinish[i]:=true

2. Findanindex isuchthatboth

a. Finish[i]=false

b. Requesti<=work
ifnosuch iexistsgoto step4.

3. Work:=work+allocationi

Finish[i]:=truegotostep2

4. Iffinish[i]=false thenprocessPiisdeadlocked

 Therearethreebasicapproachestorecoveryfromdeadlock:

1. Informthesystemoperator,andallowhim/hertotakemanualintervention.

2. Terminateoneormoreprocessesinvolvedinthedeadlock

3. Preemptresources.

1. ProcessTermination

Two basic approaches, both of which recover resources allocated to

terminatedprocesses:

Terminateallprocessesinvolvedinthedeadlock.Thisdefinitelysolvesthe

44

WINDOWS7–THREADANDSMPMANAGEMENT

deadlock, but at the expense of terminating more processes than would be

absolutely necessary.

Terminateprocessesonebyoneuntilthedeadlockisbroken.Thisismore

conservative, but requires doing deadlock detection after each step.

Inthelattercasetherearemanyfactorsthatcangointodecidingwhich processes to

terminate next:

 Processpriorities.

 Howlongtheprocesshasbeenrunning,andhowcloseitistofinishing.

 How many and what type of resources is the process holding. (Are

theyeasy to preempt and restore?)

1. Howmany moreresourcesdoestheprocessneedtocomplete.

2. How many processeswillneedtobeterminated

3. Whethertheprocessisinteractiveorbatch.

4. (Whether or not the process has made non-restorable changes to

anyresource.)

2. ResourcePreemption

Whenpreemptingresourcesto relievedeadlock,therearethreeimportant issues to

be addressed:

1. Selecting a victim - Deciding which resources to preempt from which processes

involves many of the same decision criteria outlined above.

2. Rollback - Ideally one would like to roll back a preempted process to a safe state

prior to the point at which that resource was originally allocated to the process.

Unfortunately itcanbedifficultorimpossibleto determinewhatsucha safe state is,

and so the only safe rollback is to roll back all the way back to the beginning. (

I.e. abort the process and make it start over.)

3. Starvation-Howdoyouguaranteethataprocesswon'tstarvebecauseitsresources

areconstantlybeingpreempted?Oneoptionwouldbetouseaprioritysystem,and

increasethepriorityofaprocesseverytimeitsresourcesgetpreempted.Eventually it

should get a high enough priority that it won't get preempted any more.

ThenativeprocessstructuresandservicesprovidedbytheWindowsKernelarerelativelysimple and

general purpose, allowing each OS subsystem to emulate a particular process structure and

functionality.

CharacteristicsofWindowsprocesses:

• Windowsprocessesareimplementedasobjects.

• Aprocesscanbecreatedasnewprocess,oras a copyofanexisting process.

• Anexecutableprocess maycontain oneormore threads.

• Bothprocessandthreadobjectshavebuilt-insynchronizationcapabilities.

AWindowsProcess andItsResources

 Eachprocessisassignedasecurityaccesstoken,calledtheprimarytokenofthe

process.Whenauserfirstlogson,Windowscreatesanaccesstokenthat

includesthe securityIDfortheuser.

45

 Everyprocessthatiscreatedbyorrunsonbehalfofthisuserhasacopyofthis

accesstoken.

 Windowsusesthetokentovalidatetheuser’sabilitytoaccesssecuredobjectsor to

perform restricted functions on the system and on secured objects. The access

token controls whether the process can change its own attributes.

 Related to the process is a series of blocks that define the virtual address space

currently assigned to this process.

 The process cannot directly modify these structures but mustrely on the

virtualmemory manager, which provides a memory allocation service for the

process.

 The process includes an object table, with handles to other objects known to this

process.Theprocesshasaccesstoafileobjectandtoasectionobjectthatdefines a section of

shared memory.

ProcessandThreadObjects

-orientedstructureofWindowsfacilitatesthedevelopmentofageneral-

purpose process facility.

-related objects: processes and threads.

applicationthatownsresources,

such as memory and open files.

sothattheprocessorcanturntoanotherthread.

WindowsProcessandThreadObjects

46

WindowsProcessObjectAttributes

47

WindowsThreadObjectAttributes

ThreadStates

48

Problem

1. Considerthefollowingsetofprocesses,withthelengthoftheCPU-bursttimegivenin

milliseconds:

Process Burst

Time

Arrival

Time

Priority

P1 23 0 2

P2 3 1 1

P3 6 2 4

P4 2 3 3

a. Draw four Gantt chartsillustrating the execution of these processes using FCFS,

SJF(Preemptive),anon-preemptivepriority(asmallerprioritynumberimpliesahigher

priority), and RR (quantum = 1) scheduling.

c.Whatisthewaitingtimeofeach processforeach ofthescheduling algorithms inparta?

d.Whichoftheschedulesinpartaresultsintheminimalaveragewaitingtime(overall processes)?

FCFSSCHEDULING

49

SJF(SHORTESTJOBFIRST)

InPre-emptiveShortestJobFirstScheduling,jobsareputintoreadyqueueastheyarrive,butas a process

with short burst time arrives, the existing process is pre-empted.

PRIORITY

50

ROUND ROBIN

2.

51

SJF

Priority

Round Robin

1

UNITIIISTORAGE MANAGEMENT

MainMemory-ContiguousMemoryAllocation,Paging,Segmentation,Segmentationwithpaging,32
and64bitarchitectureExamples;VirtualMemory-Background,DemandPaging,PageReplacement,
Allocation, Thrashing; Allocating Kernel Memory, OS Examples.

1. MEMORYMANAGEMENT:BACKGROUND

Memorymanagementisthefunctionalityofanoperatingsystemwhichhandlesormanagesprimary
memory and moves processes back and forth between main memory and disk during execution.

Memory management keeps track of each and every memory location, regardless of either it is
allocatedtosomeprocess oritisfree.Itcheckshowmuchmemoryistobeallocatedtoprocesses.

Itdecideswhichprocesswillgetmemoryatwhattime.

Ittrackswheneversomememorygetsfreedorunallocatedandcorrespondingly itupdatesthestatus.

 BasicHardware

Programmust bebrought(from disk)intomemory andplaced withinaprocessforit toberun

• MainmemoryandregistersareonlystorageCPUcanaccessdirectly

• Memoryunit onlyseesastreamofaddresses +readrequests,oraddress+dataandwriterequests

• RegisteraccessinoneCPUclock(or less)

• Mainmemorycantakemanycycles,causingastall

• Cachesitsbetweenmainmemory andCPUregisters

• Protectionofmemoryrequiredtoensurecorrectoperation

Wecan providethis protectionbyusingtwo registers,usually a baseandalimit

Thebaseregisterholdsthesmallestlegalphysicalmemory address;

The limit register specifies the size of the range.

Forexample,ifthebaseregisterholds300040andlimitregisteris120900,thenthe program

can legally access all addresses from 300040 through 420940 (inclusive).

2

ProtectionofmemoryspaceisaccomplishedbyhavingtheCPUhardwarecompareeveryaddress
generated in user mode with the registers.

Anyattemptbyaprogramexecutinginusermodetoaccessoperating-systemmemoryorother
users’memoryresultsin atraptotheoperatingsystem,whichtreatstheattemptasafatal error.

Thisschemepreventsauserprogramfrom(accidentallyordeliberately)modifyingthecodeordata

structures of either the operating system or other users.

AddressBindingDefi

nition

Convertingtheaddressused in aprogram toanactual physicaladdress.

Addressbindingistheprocessofmappingtheprogram'slogicalorvirtualaddressesto corresponding
physical or main memory addresses.

Inotherwords,agivenlogicaladdressismappedbytheMMU(MemoryManagementUnit)toa physical
address.

Userprogramstypicallyrefertomemoryaddresseswithsymbolicnamessuchas"i","count",and
"average Temperature".

Thesesymbolicnamesmustbemappedorboundtophysicalmemoryaddresses,whichtypically occurs
in several stages:

Threedifferentstagesof binding:

1. Compiletime.Thecompilertranslatessymbolicaddressestoabsoluteaddresses.Ifyouknow at
compile time where the process will reside in memory, then absolute code can be generated

(Static).

2. Load time. The compiler translates symbolic addresses to relative (relocatable) addresses.

The loader translates these to absolute addresses. If it is not known at compile time where the
process will reside in memory, then the compiler must generate relocatable code (Static).

3. Executiontime.Iftheprocesscanbemovedduringitsexecutionfromonememorysegment
toanother,thenbindingmustbedelayeduntilruntime.Theabsoluteaddressesaregeneratedby
hardware. Most general-purpose OS use this method (Dynamic).

3

 Logicalvs.PhysicalAddress Space

Logicaladdress–generatedbytheCPU;alsoreferredtoas“virtualaddress“ Physical

address – address seen by the memory unit.

Logicalandphysicaladdressesarethesameincompile-timeandload-timeaddress-
binding schemes

Logical(virtual)andphysical addressesdifferinexecution-timeaddress- bindingscheme

Memory-ManagementUnit(MMU)

Itisahardwaredevicethatmapsvirtual/Logicaladdresstophysical address.

Inthisscheme,therelocationregister‘svalueisaddedtoLogicaladdressgeneratedbya user
process.

TheBaseregisteriscalled arelocation register.

ntherelocationregisterisaddedtoeveryaddressgeneratedbyauserprocess at the
time it is sent to memory

dynamicallyrelocatedtolocation14000;anaccesstolocation346ismappedtolocation 14346.

tolocation346,storeitinmemory,manipulateit,andcompareitwithotheraddresses -allas the
number 346.

4

1.4DynamicLoading

Dynamicloadingisamechanismby whichacomputerprogram can,atruntime,load
alibrary(orotherbinary)intomemory, retrievetheaddressesoffunctionsandvariables

containedin thelibrary, execute those functions oraccess thosevariables, and unloadthe library
from memory.

Dynamicloadingmeans loadingthelibrary(oranyotherbinaryforthatmatter)intothememory during
load or run-time.

Dynamic loading can be imagined to be similar to plugins, that is an exe can actually

executebeforethedynamicloadinghappens(Thedynamicloadingforexamplecanbe created
using Load Library call in C or C++)

 DynamicLinkingandsharedlibraries

Dynamiclinkingreferstothelinkingthatisdoneduringloadorrun-timeandnotwhenthe exe is
created.

In case of dynamic linking the linker while creating the exe does minimal work. For the
dynamiclinkertoworkitactuallyhastoloadthelibrariestoo.Henceit'salsocalledlinking loader.

Smallpieceofcode, stub,used toindicate howto loadlibraryroutine.

Stub replaces itself with the address of the routine, and executes the routine.

Operatingsystemneededtocheckifroutineisinprocessesmemoryaddress. Dynamic

linking is particularly useful for libraries.

• Sharedlibraries:Programslinkedbeforethenewlibrarywasinstalledwillcontinueusing the

older library.

https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Executable_file
https://en.wikipedia.org/wiki/Library_function

5

2. SWAPPING

 Basic

• Aprocesscanbeswappedtemporarilyoutofmemorytoabackingstore(SWAPOUT)and then

brought back into memory for continued execution (SWAP IN).

• Backingstore–fastdisklargeenoughtoaccommodatecopiesofall memory

imagesforallusers & itmustprovide direct access to these memory images

• Rollout,rollin–swappingvariantusedforpriority-basedschedulingalgorithms;lower-

priority process is swapped out so higher-priority process can be loaded and executed

• Transfertime:Majorpartofswaptimeistransfertime.Totaltransfertimeis

directly proportional to the amount of memory swapped.

□ Example:Letusassumetheuserprocessisofsize1MB&thebacking storeisastandardhard disk with

a transfer rate of 5MBPS.

Transfertime =1000KB/5000KBper second

=1/5 sec=200ms

A process with dynamic memory requirements will need to issue system calls (request
memory()andreleasememory())toinformtheoperatingsystemofitschangingmemoryneeds.

 SwappingonMobile Systems

Swappingistypicallynotsupportedonmobileplatforms,forseveralreasons:

Mobiledevicestypicallyuseflashmemoryinplaceofmorespaciousharddrives for
persistent storage, so there is not as much space available.

Flashmemorycanonlybewrittentoalimitednumberoftimesbeforeit
becomes unreliable.

Thebandwidthtoflashmemoryisalso lower.

Apple'sIOSasksapplications tovoluntarilyfreeupmemory

Read-onlydata,e.g.code,issimplyremoved,andreloadedlaterifneeded. Modified

data, e.g. the stack, is never removed.

Appsthatfailtofreeupsufficientmemorycanberemovedbythe OS

Android follows a similar strategy.

Priortoterminatingaprocess,Androidwritesitsapplicationstatetoflashmemoryfor quick
restarting.

6

3. CONTIGUOUSMEMORYALLOCATION

Oneapproachtomemorymanagementistoloadeachprocessintoacontiguous space.

Theoperatingsystemisallocatedspacefirst,usuallyateitherloworhighmemorylocations,andthen the
remaining available memory is allocated to processes as needed.

 MemoryProtection

Protection against user programs accessing areas that they should not, allows programs to be
relocatedtodifferentmemorystartingaddressesasneeded,andallowsthememoryspacedevotedto the OS
to grow or shrink dynamically as needs change.

 MemoryAllocation

Incontiguousmemoryallocationeachprocessiscontainedinasinglecontiguousblockofmemory. Memory

is divided into several fixed size partitions. Each partition contains exactly one process.

Whenapartitionis free,aprocessisselectedfromtheinput queueandloadedinto it.

Thereare twomethodsnamely:

□ Fixed–Partition Method

□ Variable–PartitionMethod

 Fixed–Partition Method:

Dividememoryintofixedsizepartitions,whereeachpartitionhasexactlyone
process. The drawback is Memory space unused within a partition is wasted.(eg. When
process size < partition size)

 Variable-partitionmethod:

o Dividememoryintovariablesizepartitions,dependinguponthesizeofthe

incoming process.

o Whenaprocessterminates,thepartitionbecomesavailableforanotherprocess.

o Asprocessescomplete and leavetheycreateholesinthemain memory.

o Hole–blockofavailablememory;holesofvarioussizearescatteredthroughout

memory.

7

DynamicStorage-AllocationProblem:

determine

Howtosatisfyarequestofsize n‘fromalistoffree holes?

Thefreeblocksofmemoryareknownasholes.Thesetofholesissearched to
 which hole is best to allocate.

Solution:

o First-fit:Allocatethefirstholethatisbig enough.

o Best-fit:Allocatethesmallestholethatisbigenough;mustsearchentirelist,unless
ordered by size. Produces the smallest leftover hole.

o Worst-fit:Allocatethelargesthole;mustalsosearchentirelist.Producesthe
largest leftover
hole.

Example:

Givenfivememorypartitionsof100KB,500KB,200KB,300KB,and600KB(inorder),howwould
eachofthefirst-fit,best-fit,andworst-fitalgorithmsplaceprocessesof212KB,417KB,112KB,and 426 KB
(in order)?Which algorithm makes the most efficient use of memory?

a. First-fit:

1. 212Kis put in 500K partition

2. 417Kis put in 600K partition

3. 112Kisputin 288Kpartition(newpartition288K =500K−212K)

4. 426Kmustwait

b. Best-fit:

1. 212Kis put in 300K partition

2. 417Kis put in 500K partition

3. 112Kis put in 200Kpartition

4. 426Kis put in 600K partition

c. Worst-fit:

l.212Kisputin600Kpartition

2. 417Kis put in 500K partition

3. 112Kis put in 388K partition

4. 426Kmustwait

Inthisexample,best-fitturns outtobethebest.

NOTE:First-fitandbest-fitarebetterthanworst-fitintermsofspeedandstorageutilization

8

4. SEGMENTATION

 Fragmentation:

Fragmentationisaphenomenoninwhichstoragespaceisused

inefficiently, reducing capacity or performance and often both.

1. ExternalFragmentation–Thistakesplacewhenenoughtotalmemoryspace

exists to satisfy a request, but it isnot contiguous i.e, storage is fragmented into a large

number of small holes scattered throughout the main memory.

2. InternalFragmentation–Allocatedmemorymaybeslightlylargerthan
requested memory.

Example:hole=184

bytesProcesssize=

182 bytes.

Weareleft with ahole of2 bytes.

Solutions

Compaction:Moveallprocessestowardsoneendofmemory,holetowardsother end of
memory, producing one large hole of available memory. This scheme is expensive
as it can be done if relocation is dynamic and done at execution time.

 BasicMethod

o Memory-managementschemethatsupportsuserviewof memory

o Aprogramisacollectionofsegments.Asegmentisalogicalunitsuchas:Mainprogram,

Procedure, Function, Method, Object, Local variables, global variables, Common block,

Stack, Symbol table, arrays

alength.

Theaddresses specifyboththesegmentnameandtheoffsetwithinthesegment.

Theprogrammerthereforespecifieseachaddressbytwo quantities:

asegmentnameandanoffset.

Alogical address consistsofatwo tuple:

<segment-number,offset>.

Eachsegmenthasanameand

9

 SegmentationHardware

Eachentryinthesegment tablehas asegmentbaseandasegment limit.

Thesegmentbase containsthestartingphysicaladdresswherethesegmentresidesin memory,

 and the segment limit specifies the length of the segment
Alogicaladdressconsists of twoparts:

asegmentnumber
s,andanoffsetintothatsegment

segmentnumberisusedasanindextothesegmenttable.
d. The

Theoffsetd ofthelogical address mustbebetween 0and thesegment limit.

Ifitisnot,wetraptotheoperatingsystem(logicaladdressingattemptbeyondendofsegment).

Whenanoffsetislegal,itisaddedtothesegmentbasetoproducetheaddressinphysical memory
of the desired byte.

Forexample,

segment 2 is 400 bytes long and begins at location 4300. Thus, a reference to byte 53 of segment 2 is

mapped onto location 4300 + 53 = 4353. A reference to segment 3, byte 852, is mapped to 3200 (the

base of segment 3) + 852 = 4052. A reference to byte 1222 of segment 0 would result in a trap to the
operating system, as this segment is only 1,000 bytes long.

10

5. PAGING

• Itisamemorymanagementschemethatpermitsthephysicaladdressspaceof a

process to be noncontiguous.

• Itavoidstheconsiderableproblemoffittingthevaryingsizememorychunkson to the

backing store.

 BasicMethod

o Dividelogicalmemoryintoblocks ofsamesizecalled“pages”.

o Dividephysicalmemoryintofixed-sizedblockscalled“frames”

o Pagesizeisapowerof2,between 512bytesand 16MB.

AddressTranslationScheme

eachpage
AddressgeneratedbyCPU(logicaladdress)isdividedinto:

Pagenumber(p)–usedasanindexintoapagetablewhichcontains baseaddressof

inphysical memory

Pageoffset(d)–combinedwithbaseaddresstodefinethephysicaladdress i.e.,

Physical address = base address + offset

11

Thepagenumberisused asanindexintoapagetable.Thepagetablecontainsthebaseaddress of each
page in physical memory.

Thisbaseaddressiscombinedwiththepageoffsettodefinethephysicalmemoryaddressthatis sent to
the memory unit.

Consider the memory in the logical address, n= 2 and m = 4. Using a page size of 4 bytes and a
physicalmemoryof32bytes(8pages),weshowhowtheprogrammer’sviewofmemorycanbe mapped

into physical memory. Logical address 0 is page 0, offset 0. Indexing into the page table, we

find that page 0 is in frame 5.

Thus,logicaladdress0mapstophysical address20[=(5×4)+0].Logicaladdress 3(page0,

offset3)mapstophysicaladdress23[=(5×4)+ 3].Logicaladdress4ispage1,offset0; according

to the page table, page 1 is mapped to frame 6. Thus, logical address 4 maps to physical

address 24 [= (6 × 4) + 0]. Logical address 13 maps to physical address 9.

12

Sincetheoperating system is managing physical memory, it must be awareof the allocation details

ofphysicalmemory,whichframesareallocated,whichframesareavailable,howmanytotal frames there
are, and so on.

Thisinformationisgenerally keptinadatastructurecalledaframe table.

The frame table has one entry for each physical page frame, indicating whether the latter is free or

allocated and, if it is allocated, to which page of which process or processes.

13

 HardwareSupport

TheTLBisassociative,high-speedmemory.

EachentryintheTLBconsistsoftwoparts:

akey(ortag)anda value.

Whentheassociativememoryispresentedwithanitem,theitemiscomparedwithall

 keyssimultaneously.

Iftheitemisfound,thecorrespondingvaluefieldisreturned.

TheTLBcontainsonlyafewofthepage-table entries.

WhenalogicaladdressisgeneratedbytheCPU,itspagenumberispresentedtotheTLB.

IfthepagenumberisnotintheTLB(knownasaTLBmiss),amemoryreference to the

page

tablemustbemade.

DependingontheCPU,thismaybedoneautomaticallyinhardwareorviaaninterrupttothe

operatingsystem.

Ifthepagenumberisfound,itsframenumberisimmediatelyavailableandisusedtoaccess

Memory.

HitRatio-ThepercentageoftimesthatthepagenumberofinterestisfoundintheTLBis called the

hitratio.

An80-percenthitratio,forexample,meansthatwefindthedesiredpagenumberintheTLB80 percent

of the time. If it takes 100 nanoseconds to access memory, then a mapped-memory access

takes 100 nanoseconds when the page number is in the TLB.

IfwefailtofindthepagenumberintheTLBthenwemustfirstaccessmemoryforthepage table and

frame number (100 nanoseconds) and then access the desired byte in memory (100

nanoseconds), for a total of 200 nanoseconds.

effectiveaccesstime=0.80×100+0.20×200

=120 nanoseconds

Fora99-percenthit ratio, whichismuchmorerealistic,wehaveeffectiveaccesstime=
0.99 ×100 +0.01 ×200 =101 nanoseconds

14

 Protection

Memoryprotectioninapagedenvironmentisaccomplishedbyprotectionbitsassociatedwitheach frame.

Oneadditionalbit isgenerally attachedto eachentry inthepagetable: avalid–invalid bit.

Whenthisbitissettovalid,theassociatedpageisintheprocess’slogicaladdressspaceandisthus a legal (or
valid) page.

Whenthebitissettoinvalid,thepageisnotintheprocess’slogicaladdressspace. Illegaladdresses are
trapped by use of the valid–invalid bit.

15

 SharedPages

Anadvantageofpaging isthepossibilityofsharingcommoncode.

6. STRUCTUREOFPAGETABLE

Themostcommontechniquesforstructuringthepagetable,includinghierarchicalpaging,hashed page
tables, and inverted page tables.

1. HierarchicalPaging

Thepagetableitselfbecomeslargeforcomputerswith largelogicaladdressspace(232to264).
Example:

rasystemwitha32-bitlogicaladdressspace. Ifthepagesizeinsuchasystemis4 KB(212),
then a page table may consist of up to 1 million entries (232/212).

physicaladdressspacefor thepagetablealone.

-levelpaging algorithm,

16

Forexample, consider again thesystem with a32-bit logical address spaceand apagesizeof4 KB. A

logical address is divided into a page number consisting of 20bitsand apage offset consisting of 12

bits.

Becausewepagethepagetable, thepagenumber is furtherdivided intoa10-bit pagenumberand a 10-bit
page offset.

Thus,alogicaladdressisas follows:

where

p1-anindex into theouterpagetable

p2-thedisplacement within thepageoftheinnerpagetable.

The address-translation method for this architecture is shown in the figure. Because address
translation

worksfromtheouterpagetableinward,this schemeisalso knownasaforward-mappedpagetable.

2. HashedPageTables

sspaceslargerthan 32bits istouseahashed page

table,withthehashvaluebeingthevirtualpagenumber. (to

handle collisions).

17

Algorithm:

onsistsofthreefields: The

virtual page number

Thevalueofthemappedpageframe

Apointerto the nextelement in thelinked list.

eriscomparedwithfield1in thefirstelementin thelinked list.

physical

address.

pagenumber.

oramatching virtual

3. InvertedPageTable

Witheachprocesshavingitsownpagetable,andwitheachpagetableconsuming considerable
amount of memory

Weusealot of memorytokeep trackofmemory.

Invertedpagetablehas oneentry foreach real pageofmemory.

Lookuptimeisincreasedbecauseitrequiresasearchontheinvertedtable. Hash

table can be used to reduce this problem.

18

7.INTEL32AND64-BITARCHITECTURES

Eachvirtualaddressinthesystemconsistsofatriple:

<process-id,page-number,offset>.

IA-32Segmentation

ThePentiumCPUprovidesbothpuresegmentationandsegmentationwithpaging.Inthelattercase,
theCPUgeneratesalogicaladdress(segment-offsetpair),whichthesegmentationunitconvertsinto a
logical linear address, which in turn is mapped to a physical frame by the paging unit

IA-32Segmentation

ThePentiumarchitectureallowssegmentstobeaslargeas4GB,(24bitsofoffset). Processes

can have as many as 16K segments, divided into two 8K groups:

8Kprivatetothatparticularprocess,storedintheLocalDescriptorTable,LDT. 8K

shared among all processes, stored in the Global Descriptor Table, GDT.

Logicaladdressesare(selector,offset)pairs,wheretheselectorismadeupof16bits: A 13 bit

segment number (up to 8K)

A1bitflagforLDTvs.GDT. 2

bits for protection codes.

Thedescriptortablescontain8-bytedescriptionsofeachsegment,includingbaseandlimitregisters. Logical
linear addresses are generated by looking the selector up in the descriptor table and adding the

appropriate base address to the offset.

19

IA-32Paging

Pentium paging normally uses a two-tier paging scheme, with the first 10 bits being a page number
for an outer page table (a.k.a. page directory), and the next 10 bits being a page number within one
of the 1024 inner page tables, leaving the remaining 12 bits as an offset into a 4K page.

A special bit in the page directory can indicate that this page is a 4MB page, in which case the
remaining 22 bits are all used as offset and the inner tier of page tables is not used.

TheCR3registerpoints tothepagedirectory forthecurrent process.

If the inner page table is currently swapped out todisk, then the page directory will have an "invalid

bit" set, and the remaining 31 bits provide information on where to find the swapped out page table
on the disk.

20

x86-64

TheinitialentryofInteldeveloping64-bitarchitectureswasthe IA-64(laternamed Itanium)
architecture, but was not widely adopted.

—begandevelopinga64-bitarchitectureknownasx86-64thatwas based
on extending the existing IA-32 instruction set.

-64supportedmuchlargerlogicalandphysicaladdressspaces,aswellasseveral other
architectural advances.

-bitaddressspaceyieldsanastonishing264bytesofaddressable
memory— a number greater than 16 quintillion (or 16 exabytes).

8. IRTUAL MEMORY

o Itisatechniquethatallowstheexecutionofprocessesthatmaynotbecompletelyinmain memory.

Virtualmemoryistheseparationofuserlogicalmemoryfromphysicalmemory.This

separation allows an extremelylarge virtual memoryto be provided for programmers

when only a smaller physical memory is available.

– Onlypart ofthe programneeds tobeinmemory forexecution.

– Logicaladdress spacecanthereforebemuchlargerthanphysicaladdressspace.

– Needtoallowpagestobeswappedinandout.

o Advantages:

□ Allowstheprogramthatcanbelargerthanthephysical memory.

□ Separationofuserlogicalmemoryfromphysicalmemory

□ Allowsprocessestoeasilysharefiles&addressspace.

□ Allowsformoreefficientprocess creation.

21

o Virtualmemorycanbeimplementedusing

□ Demandpaging

□ Demandsegmentation

9. DEMANDPAGING

Concept

Thebasicideabehind demandpaging is that when aprocess is swapped in, its pages arenot swapped in
all at once. Rather they are swapped in only when the process needs them (On demand). This is
termed as lazy swapper.

Advantages

□ LessI/Oneeded

□ Lessmemoryneeded

□ Fasterresponse

□ Moreusers

Pagetablewhen somepagesarenot in mainmemory.

22

Theprocedureforhandlingthispagefault

1. Wecheckaninternaltable(usuallykeptwiththeprocesscontrolblock)forthisprocessto
determine whether the reference was a valid or an invalid memory access.

2. Ifthereferencewasinvalid,weterminatetheprocess. Ifitwasvalidbutwehavenotyetbrought in that
page, we now page it in.

3. Wefindafreeframe(bytakingonefromthefree-framelist,forexample).

4. Wescheduleadisk operation toread thedesiredpageinto thenewlyallocated frame.

5. Whenthediskreadiscomplete,wemodifytheinternaltablekeptwiththeprocessandthepage table to
indicate that the page is now in memory.

6. Werestarttheinstruction thatwasinterruptedbythetrap.Theprocess can nowaccessthepage as
though it had always been in memory.

PerformanceofDemandPaging

EffectiveAccessTime(EAT)forademand-pagedmemory.

MemoryAccessTime(ma)formostcomputersnowrangesfrom10to200nanoseconds. If there

is no page fault, then EAT = ma.

Ifthereis pagefault, then

EAT=(1–p)x(ma)+px(page-faulttime). p: the

probability of a page fault (0 ≤ p ≤ 1),

weexpectptobeclosetozero(afewpagefaults). If p=0

then no page faults, but if p=1 then every reference

is a fault

Ifapagefaultoccurs,wemustfirstreadtherelevantpagefromdisk,andthenaccessthe desired
word.

23

10.PAGEREPLACEMENT

Example

Assumeanaveragepage-faultservicetimeof25milliseconds(10-3),andaMemoryAccessTime of 100
nanoseconds (10-9). Find the Effective Access Time?

Solution:EffectiveAccess Time(EAT)

= (1 – p)x (ma) +px (pagefault time)

= (1 – p) x100 +p x 25,000,000

=100 – 100 xp +25,000,000 xp

=100 +24,999,900 x p.

•Note:TheEffectiveAccessTimeisdirectlyproportionaltothepage-fault rate.

Pagefault

Apagefaultisatypeofinterrupt,raisedbythehardwarewhenarunningprogram accesses
a memory page that is mapped into the virtual address space, but not loaded in physical memory.

Needforpage replacement

Pagereplacementisneededtodecidewhichpageneededtobereplacedwhennew page
comes in.

1. Findthelocation ofthedesiredpageonthe disk.

2. Findafreeframe:

a. Ifthereisafreeframe,useit.

b. Ifthereisnofreeframe,useapage-replacementalgorithmtoselect a

victim frame.

c. Writethevictimframetothedisk;changethepageandframetables
accordingly.

3. Readthedesiredpageintothenewlyfreedframe;changethepageand frame
tables.

4. Continuetheuserprocessfrom wherethepagefaultoccurred.

24

Pagereplacementalgorithms

(a) FIFOpagereplacementalgorithm

Thisisthesimplestpagereplacementalgorithm.Inthisalgorithm,operatingsystemkeeps track

ofall pages in thememory in aqueue, oldest pageis in thefront ofthequeue. When a page
needs to be replaced page in the front of the queue is selected for removal.

Example:

Referencestring:7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

No.ofavailable frames = 3 (3pagescanbeinmemoryatatimeperprocess)

No.ofpagefaults = 15

(b) Optimalpagereplacement algorithm

Inthisalgorithm,pagesarereplacedwhicharenotusedforthelongestdurationoftime in the
future.

Example:

No.ofpagefaults =9

25

(c) LRU(LeastRecentlyUsed)pagereplacementalgorithm

Inthisalgorithmpagewillbereplacedwhichisleastrecentlyused.

Example:

Referencestring:7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

No.ofavailableframes=3

PageFault=12

ImplementationofLRU

1. Counter

□ Thecounterorclockisincrementedforevery memory reference.

□ Eachtimeapageisreferenced ,copythecounterintothetime-of-usefield.

□ Whenapageneedstobereplaced,replacethepagewiththesmallest counter

value.

2. Stack

□ Keepastackofpagenumbers

□ Wheneverapageisreferenced,removethepagefromthestackandputit on top of

the stack.

□ Whenapageneedstobereplaced,replacethepagethatisatthebottom of the

stack.(LRU page)

UseofAStack toRecordTheMostRecentPageReferences

26

(d) LRUApproximation PageReplacement

o Referencebit

□ Witheachpageassociate areferencebit,initially setto0

□ Whenpageisreferenced,thebitissetto 1

o Whenapageneeds tobe replaced,replace thepagewhosereferencebitis 0

o Theorderofuseisnotknown,butweknowwhichpageswereusedand whichwerenot used.

(i) AdditionalReferenceBits Algorithm

o Keepan8-bit byteforeach pageinatablein memory.

o Atregularintervals ,atimerinterrupttransferscontroltoOS.

o TheOSshiftsreferencebitforeachpageintohigher-orderbitshifting the

other bits right 1 bit and discarding the lower-order bit.

Example:

oIfreferencebitis00000000thenthepagehasnotbeenusedfor8timeperiods.

oIfreferencebitis11111111thenthepagehasbeenusedatleastonceeach time period.

oIf the reference bit of page 1 is 11000100 and page 2 is 01110111 then page 2 is

the LRU

page.

(ii) SecondChanceAlgorithm

oBasicalgorithmisFIFO

oWhenapagehasbeenselected,checkitsreference bit.

□ If0proceedtoreplacethepage

□ If1 givethepageasecond chanceand move ontothenext FIFO page.

□ Whenapagegetsasecondchance,itsreferencebitisclearedand arrival

time is reset to current time.

□ Henceasecondchancepagewillnotbereplaceduntilallother pages

are replaced.

27

(iii) EnhancedSecondChanceAlgorithm

o Consider both reference bit and modify bit o

There are four possible classes

1. (0,0)–neither recentlyused normodified estpagetoreplace

2. (0,1)–notrecentlyusedbutmodifiedpagehastobewrittenout

before replacement.

3. (1,0)-recently used butnot modified pagemay beused again

4. (1,1)–recentlyusedandmodifiedpagemaybeusedagainand page

has to be written to disk

(iv) Counting-BasedPageReplacement

o Keepa counterofthenumberofreferencesthathavebeenmadetoeachpage

1. LeastFrequently Used (LFU)Algorithm: replaces page withsmallestcount

2. MostFrequentlyUsed (MFU)Algorithm: replaces page withlargestcount

□ isbasedontheargumentthatthepagewiththesmallestcountwas

probably just brought in and has yet to be used

11. ALLOCATIONOF FRAMES

 Allocation ofFrames

o Therearetwomajorallocationschemes

□ EqualAllocation

□ ProportionalAllocation

28

12.THRASHING

Equal allocation

□ Iftherearenprocessesandmframesthenallocatem/nframes to

each process.

□ Example:Ifthereare5processesand100frames,giveeach

process 20 frames.

□ Allocateaccordingtothesizeofprocess

Letsibethesizeofprocessi. Let

m be the total no. of frames

Then S = ∑ si

ai=si/S*m

whereaiistheno.offramesallocatedtoprocessi.

 Globalvs.Local Replacement

o Globalreplacement–eachprocessselectsareplacementframefromthesetof all
frames; one process can take a frame from another.

o Localreplacement–eachprocessselectsfromonlyitsownsetofallocatedframes.

Thrashing

o Highpagingactivity iscalledthrashing.

o Ifaprocessdoesnothaveenoughpages,thepage-faultrateisvery high.

This leads to:

□ low CPU utilization

□ operatingsystemthinksthatitneeds toincreasethedegreeof multiprogramming

□ anotherprocess is addedtothesystem

o WhentheCPUutilization islow,theOSincreasesthedegreeof multiprogramming.

oIfglobalreplacementisusedthenasprocessesenterthemainmemorytheytendtosteal frames

belonging to other processes.

o Eventuallyallprocesseswillnothaveenoughframesandhencethepagefaultratebecomes very
high.

29

o Thusswappinginandswappingoutofpagesonlytakesplace.

o Thisis thecauseofthrashing.

o Tolimitthrashing,wecanusealocalreplacement

algorithm. o To prevent thrashing, there are two

methods namely ,

□ WorkingSetStrategy

□ PageFaultFrequency

1. Working-SetStrategy

o Itisbased onthe assumption ofthe modelof locality.

o Localityisdefinedasthesetofpagesactivelyusedtogether.

o Whateverpagesareincludedinthemostrecentpagereferencesaresaidtobeinthe

processes working set window, and comprise its current working set .

Ifapageisinactiveuse, itwillbeintheworkingset.Ifitisnolongerbeingused,itwilldrop from the
working set time units after its last reference.

eselectionof.

severallocalities.

process execution.

30

13.ALLOCATINGKERNEL MEMORY

emostimportant property oftheworkingset,then, isits size.

-setsize,WSSi ,foreachprocessinthesystem,wecanthen

considerthat

isthetotaldemandforframes.Eachprocessisactivelyusingthepagesin its

working set.

availableframes(D>m),thrashingwilloccur,becausesomeprocesseswill nothaveenough frames.

2. Page-FaultFrequencyScheme

Thrashinghasahighpage-faultrate.Thus,wewanttocontrolthepage-faultrate.

Whenitistoohigh,weknowthattheprocessneedsmoreframes.Conversely,ifthepage-faultrateistoo

low,thentheprocessmayhavetoomanyframes.

Wecanestablishupperandlowerboundsonthedesiredpage-faultrate.

Iftheactualpage-faultrateexceedstheupperlimit,weallocatetheprocessanotherframe.

Ifthepage-faultratefallsbelowthelowerlimit,weremoveaframefromtheprocess.

Thus,wecandirectlymeasureandcontrolthepage-faultratetoprevent thrashing.

AllocatingKernelMemory

When a process running in user mode requests additional memory, pages are allocated from

the list of free page frames maintained by the kernel. This list is typically populated using a page-

replacement algorithm such as those discussed in Section 9.4 and most likely contains free pages

scattered throughout physical memory, as explained earlier. Remember, too, that if a user process

requests a single byte of memory, internal fragmentation will result, as the process will be grantedan

entire page frame.

Kernel memory is often allocated from a free-memory pool different from the list used to

satisfy ordinary user-mode processes. There are two primary reasons for this:

31

1. The kernel requests memory for data structures of varying sizes, some of which are less

thanapagein size. As a result, thekernel must usememory conservatively and attempt to minimize

waste due to fragmentation. This is especially important because many operating systems do not

subject kernel code or data to the paging system.

2. Pagesallocatedtouser-modeprocessesdonotnecessarilyhavetobeincontiguousphysical

memory. However, certain hardware devices interact directly with physical memory— without the

benefitofavirtualmemoryinterface—andconsequentlymayrequirememoryresiding inphysically

contiguous pages.

BuddySystem

The buddy system allocates memory from a fixed -size segment consisting of physically

contiguous pages. Memory is allocated from this segment using a power-of-2 allocator, which

satisfies requests in units sized as a power of 2 (4KB, 8KB, 16KB, and so forth). A request in units

notappropriatelysizedisroundeduptothenexthighestpowerof2.Forexample,arequestfor11KB is

satisfied with a 16K segment

Let’sconsiderasimpleexample.Assumethesizeofamemorysegmentisinitially256KBandthe kernel
requests 21 KB of memory.

Thesegmentisinitiallydividedintotwobuddies—whichwewillcallALandAR—each128KBin size. One
of these buddies is further divided into two 64-KB buddies— BL and BR.

However,thenext-highestpowerof2from21KBis32KBsoeitherBLorBRisagaindividedinto two 32-KB
buddies, CL and CR. One of these buddies is used to satisfy the 21-KB request.

32

SlabAllocation

Asecondstrategyforallocatingkernelmemoryisknownasslaballocation.Aslabismadeupofone or more
physically contiguous pages. A cache consists of one or more slabs.

Theslab-allocationalgorithmusescachestostorekernelobjects.

Whenacacheiscreated,anumberofobjectswhichareinitiallymarkedasfreeareallocatedtothe cache.
The number of objects in the cache depends on the size of the associated slab.

Forexample,a12-KB slab(madeupofthree contiguous 4-KBpages)couldstoresix2-KB objects.

InLinux,aslabmay bein oneofthreepossible states:

1. Full.All objectsintheslabaremarkedasused.

2. Empty.Allobjectsintheslabaremarkedasfree.

3. Partial.Theslabconsists ofbothusedandfree objects.

Theslaballocatorfirstattemptstosatisfytherequestwithafreeobjectinapartialslab. If none

exists, a free object is assigned from an empty slab.

Ifnoemptyslabsareavailable,anewslabisallocatedfromcontiguousphysicalpagesandassigned to a
cache; memory for the object is allocated from this slab.

33

o TheIBMOS/2.32bitversionisanoperatingsystemrunningontopoftheIntel386architecture. The 386

uses segmentationwith paging formemory management. The maximum number of segments per

process is 16 KB, and each segment can be as large as 4 gigabytes.

o Thelocal-addressspaceofaprocessisdivided intotwopartitions.

Thefirstpartitionconsistsofupto8KBsegmentsthatareprivateto thatprocess.

The second partition consists of up to 8KB segments that are

sharedamong all the processes.

o Informationabout the firstpartitioniskept in the local descriptortable (LDT),

information about the second partition is kept in the global descriptor table (GDT).

o EachentryintheLDTandGDTconsistof8bytes,withdetailedinformationabout a

particular segment including the base location and length of the segment.

Thelogicaladdressisapair(selector,offset)wheretheselectorisa16-bitnumber:

s g p

13 1 2

Wheresdesignatesthesegmentnumber,gindicateswhetherthe

segmentisintheGDTorLDT,andpdealswithprotection.Theoffsetisa32-bitnumberspecifying the

location of the byte within the segment in question.

o The base and limit information about the segment in question are used to generate a linear-

address.

o First, the limit is used to check for address validity. If the address is not valid, a memory fault is

generated,resultinginatraptotheoperatingsystem.Ifitisvalid,thenthevalueoftheoffset

isaddedtothevalueofthebase,resultingina32-bitlinearaddress.Thisaddressisthentranslated into a

physical address.

o Thelinearaddressisdividedintoapagenumberconsistingof20bits,andapageoffsetconsisting

of12bits.Sincewepagethepagetable,thepage number is further divided intoa10-bit pagedirectory

 pointeranda10-bit

pagetablepointer.Thelogicaladdressisasfollows.

p1 p2 d

10 10 12

14.SEGMENTATIONWITHPAGING

34

oToimprovetheefficiencyofphysicalmemoryuse.Intel386pagetablescan

beswappedtodisk.Inthiscase,aninvalidbitisusedinthepagedirectoryentry to indicate whether the table to

which the entry is pointing is in memory or on disk.

oIf the table ison disk, the operatingsystem canuse the other 31 bits to specify thedisklocation

ofthetable;thetablethencanbebroughtintomemoryon demand.

1

UNITIVFILESYSTEMSANDI/OSYSTEMS

Mass Storage system – Overview of Mass Storage Structure, Disk Structure, Disk

SchedulingandManagement,swapspacemanagement;File-SystemInterface–

Fileconcept,Accessmethods, Directory Structure, Directory organization, File system mounting,

File Sharing and Protection; File System Implementation- File System Structure, Directory

implementation, Allocation Methods, Free Space Management, Efficiency and Performance,

Recovery; I/O Systems – I/O Hardware, Application I/O interface, Kernel I/O

subsystem,Streams, Performance.

MASSSTORAGESTRUCTURE

1. OverviewofMassStorageStructure

Magnetic Disks

 Inmoderncomputers, mostof the secondarystorage is in theform of magnetic disks.

 Amagneticdiskcontainsseveralplatters.Eachplatterisdividedintocircular shaped

tracks.

 The length of the tracks near the centre is less than the length ofthe tracks farther

from the centre.

 Eachtrackisfurtherdividedintosectors.

 Tracksofthesamedistancefromcentreformacylinder.

 Aread-writeheadisusedtoreaddatafromasectorofthemagneticdisk.

 Thespeedofthedisk ismeasuredastwo parts:

Transferrate:Thisis therateatwhich thedatamovesfrom disk tothecomputer.

Randomaccess time:Itisthesumoftheseektimeandrotational latency.

Seek time is the time taken by the arm to move to the required track.

Rotationallatencyisdefinedasthetimetakenbythearmtoreachtherequired sector

in the track.

Solid-StateDisks

SDisnon-volatile memorythatisusedlike aharddrive.SSDshavethesame

characteristicsastraditionalharddisksbutcanbemorereliablebecausetheyhaveno

2

moving parts and faster because they have no seek time or latency. In addition, they

consume less power.

SSDs have less capacity than the larger hard disks, and may have shorter life

spans. use for SSDs is in storage arrays, where they hold file- system metadata that

requirehighperformance.SomeSSDsaredesignedtoconnectdirectlytothesystembus.

Magnetic Tapes

Magnetic tape was used as an early secondary-storage medium. Although it is

relatively permanent and can hold large quantities of data, its access time is slow

compared with that of main memory and magnetic disk.

Inaddition,randomaccesstomagnetictapeisaboutathousandtimesslowerthan

random access to magnetic disk, so tapes are not very useful for secondary storage.

2. Disk Structure

In Disk drives are addressed as large 1-dimensional arrays of logical blocks,

wherethelogicalblockisthesmallestunitoftransfer.nThe1-dimensionalarrayof logical

blocksis mapped into the sectors of the disk sequentially.

InSector0isthefirstsectorofthefirsttrackontheoutermostcylinder.

InMappingproceedsinorderthroughthattrack,thentherestofthetracksinthat cylinder, and

then through the rest of the cylinders from outermost to innermost.

3. Disk Scheduling

Theoperatingsystemisresponsibleforusing hardwareefficiently.

Forthediskdrives,thismeanshaving afast accesstime&disk bandwidth.

Accesstimehastwo majorcomponents:

Seektimeisthetimeforthedisktomovetheheadstothecylindercontaining the

desired sector

Rotationallatencytimewaitingforthedisktorotatethedesiredsectortothe disk

head

Weliketominimizeseek time.

Diskbandwidthisthetotalnumberofbytestransferreddividedbythetotaltime between the

first request for service and the completion of the last transfer.

Severalalgorithmsexist toscheduletheservicingofdiskI/Orequests.

WeillustratethemwithaRequestQueue(cylinderrange0-199): 98,

183, 37, 122, 14, 124, 65, 67

Headpointer:cylinder53

1. FirstComeFirst Serve

Thisalgorithmperformsrequestsinthesameorderaskedbythesystem.Let's take an

example where the queue has the following requests with cylinder numbers as

follows:

98, 183, 37, 122, 14, 124, 65, 67

Illustrationshowstotalheadmovement of640cylinders

3

2. SSTF(ShortestSeekTimeFirst)

Selectstherequestwith theminimumseektimefromthecurrentheadposition.

SSTFschedulingisaform ofSJFscheduling;maycausestarvationofsome requests.

Illustrationshowstotalheadmovementof236cylinders.

3. SCAN

Thediskarmstartsatoneendofthedisk,andmovestowardtheotherend,servicingrequests until it

gets tothe other end of the disk, wherethe head movement is reversed and servicing

continues.

SCANalgorithmsometimescalledtheelevatoralgorithm.

Illustration shows total head movement of 208 cylinders

4. C-SCAN

4

Providesamoreuniform waittimethanSCAN.Theheadmovesfromone endofthedisk to the

other, servicing requests as it goes When it reaches the other end, however, it

immediatelyreturnstothebeginningofthedisk,withoutservicinganyrequestsonthereturn trip.

Treats the cylinders as a Circular list that wraps around from the last cylinder to the first

one .

5. LOOK

VersionofC-SCAN

Armonlygoesasfarasthelastrequestineachdirection,thenreversesdirection

immediately, without first going all the way to the end of the disk.

4. DiskManagement

Theoperatingsystemisresponsiblefordiskinitialization,bootingfromdisk,and bad-

block recovery.

DiskFormatting

Anewmagneticdiskmustbedividedintosectorsthatthediskcontrollercanread and

write. This process is called low-level formatting, or physical formatting. Low-

levelformatting fills the disk with a special data structure for each sector. The data

structure for a sector typically consists of a header, a data area (usually 512 bytesin

size), and a trailer.

The header and trailer contain information used by the disk controller, such as a

sector number and an error-correcting code (ECC).

5

This formatting enables the manufacturer to 1. Test the disk and 2. To initialize

the mapping from logical block numbers

Touseadisktoholdfiles,theoperatingsystemstillneedstorecorditsown data structures

on the disk.

Itdoessointwosteps.

(a) ThefirststepisPartitionthediskintooneormoregroupsofcylinders.

Amongthepartitions,onepartitioncanholdacopyoftheOS‘s

executable code, while another holds user files.

BootBlock

(b) Thesecondstepislogicalformatting.Theoperatingsystemstoresthe

initial file-system data structures onto the disk. These datastructures

may includemapsoffreeand allocatedspace andan

initial empty directory.

For a computer to start running-for instance, when it is powered up or rebooted-

itneedstohaveaninitialprogramtorun.Thisinitialprogramiscalledbootstrapprogram & it

should be simple.

Itinitializesallaspectsofthesystem,fromCPUregisterstodevicecontrollers and

the contents of main memory, and then starts the operating system.

The bootstrap is stored in read-only memory (ROM). This location is

convenient, because ROM needs no initialization and is at a fixed location that the

processorcanstartexecutingwhenpowereduporreset.And,sinceROMisreadonly, it

cannot be infected by a computer virus.

The full bootstrap program is stored in the “boot blocks” at a fixed locationon

the disk. A disk that has a boot partition is called a boot disk or system disk. The

work of boot block as follows

1. Findstheoperatingsystem kernel ondisk,

2. Loadsthatkernelintomemory,and

3. Jumpstoaninitialaddresstobegintheoperating-systemexecution.

The full bootstrap program is stored in a partition called the boot blocks,

at a fixed location on the disk. A disk that has a boot partition is called a boot disk or

system disk.

Thecode in the boot ROM instructs the disk controller to read the boot blocks

into memory and then starts executing that code.

6

Bootstrap loader - load the entire operating system from a non-fixed location

on disk, and to start the operating system running.

BadBlocks

Thediskwithdefectedsectoriscalledasbadblock.Dependingonthediskand

controller in use, these blocks are handled in a variety of ways;

Method1:“Handledmanually‖

If blocks go bad during normal operation, a special program must be run

manuallytosearchforthebadblocksandtolockthemawayasbefore.Datathatresided on the

bad blocks usually are lost.

Method2:“sectorsparingorforwarding”

The controller maintains a list of bad blocks on the disk. Then the

controller can be told to replace each bad sector logically with one of the spare

sectors. This scheme is known as sector sparing or forwarding.

Atypicalbad-sector transactionmightbeasfollows:

 Theoperating systemtriestoreadlogical block87.

 Thecontrollercalculates the ECC and findsthatthesectoris bad.

 Itreportsthis findingtotheoperatingsystem.

 Thenexttimethatthesystemisrebooted,aspecialcommandisruntotell the

controllertoreplacethe badsectorwitha spare.

 Afterthat,wheneverthesystemrequestslogicalblock87,therequestis translated

into the replacement sector's address by the controller.

Method3:“sectorslipping”

For an example, suppose that logical block 17 becomes defective, and the first

available spare follows sector 202. Then, sector slipping would remap all the sectors

from 17 to 202, moving them all down one spot. That is, sector 202 would be copied

into the spare, then sector 201 into 202, and then 200 into 201, and so on, until sector

18iscopiedintosector19.Slippingthesectors in thiswayfrees upthespaceofsector 18, so

sector 17 can be mapped to it.

5. Swap-SpaceManagement

Swap-space—virtualmemoryusesdiskspaceasanextensionofmainmemory.

Maingoalforthedesignandimplementationofswapspaceistoprovidethebest throughput

for VM system

1. Swap-space use

Swapping –use swap space to hold entire process image

Paging–storepagesthathavebeenpushedoutofmemory

SomeOSmaysupportmultipleswap-space

–Putonseparatediskstobalancethe load

Bettertooverestimatethan underestimate

–Ifoutofswap-space,someprocessesmustbeabortedorsystemcrashed

2. Swap-SpaceLocation

Swap-spacecanbecarvedoutofthenormalfilesystem,orinaseparatedisk partition

Alargefilewithinthefilesystem: simple but inefficient

–Navigatingthedirectorystructureandthedisk-allocationdata

structure takes time and potentially extra disk accesses

7

–Externalfragmentationcangreatlyincreaseswappingtimesby

forcing multiple seeks during reading or writing of a process image

–Improvement

Cachingblocklocationinformationinmainmemory

•Contiguousallocationfortheswapfile

But,thecostoftraversingFS datastructurestillremains

Inaseparatepartition:raw partition

–Createaswap spaceduringdisk partitioning

–Aseparateswap-spacestoragemanagerisusedtoallocateandde-allocate blocks

–Usealgorithms optimizedforspeed,ratherthanstorageefficiency

–Internalfragmentmayincrease

Linuxsupports both approaches

Swap-spaceManagement:Example

Solaris 1

–Text-segmentpagesarebroughtinfromthefilesystemandare

thrown away if selected for paged out

Moreefficienttore-read fromFSthanwriteittotheswapspace

-Swapspace:onlyusedasabackingstoreforpagesofanonymous memory

Stack,heap,anduninitializeddata

Solaris 2

–Allocatesswapspaceonlywhenapageisforcedoutofphysical memory

Notwhenthe virtualmemorypageisfirst created.

FILESYSTEMINTERFACE

1. FileConcepts

Afileisanamedcollectionofrelatedinformationthatisrecorded

onsecondary storage. From user’s perspective a , a file is the smallest

allotmentofthat logical secondary storage; unless they are within a file.

Commonly,filesrepresentprograms(bothsourceandobjectforms)and data.

Data files may be numeric, alphabetic, alphanumeric, or binary.

Ingeneral,afileisasequenceofbits,bytes,lines,orrecords,themeaningofwhich

isdefined by the file’s creator and user.

A text file is a sequence of characters organized into lines (and possibly pages).

An executable file is a series of code sections that the loader can bring into

memory and execute.

2. FileAttributes

Theinformationaboutallfilesiskeptinthedirectorystructure,adirectoryentry

consistsofthefile’snameanditsuniqueidentifier.Theidentifierinturnlocatestheother file

attributes.

 Name: The symbolic file name isthe onlyinformation keptinhuman readable

form.

8

 Identifier: This unique tag, usually a number identifies the file within the file

system. It is the non-human readable name for the file.

 Type:Thisinformation isneededforthosesystems thatsupportdifferenttypes.

 Location: This information is a pointer to a device and to the location of the fileon

that device.

 Size:Thecurrentsize ofthefile(inbytes,wordsorblocks)andpossiblythe maximum

allowed size are included in this attribute.

 Protection:Access-controlinformationdetermineswhocandoreading,

writing, executing and so on.

 Time, date and user identification: This information may be kept for

creation,lastmodificationandlastuse.Thesedatacanbeusefulforprotection,

security and usage monitoring.

3. FileOperations

Theoperating system can providesystem calls to create, write, read,

reposition, delete, and truncate files.

Creating a file - First, spacein the file system must befoundforthe file, Second, an

entry for the new file must be made in the directory.

Writingafile -System callspecifyingboth thenameofthe fileandtheinformation to be

written to the file.

Readingafile-weuseasystemcallthatspecifiesthenameofthefileand where (in

memory) the next block of the file should be put.

Repositioningwithinafile-Thedirectoryissearchedfortheappropriate entry, and the

current-file-position pointer is repositioned to a given value.

Deletingafile-searchthedirectoryforthenamedfile.Havingfoundthe associated

directory entry, we release all file space

Truncating a file - this function allows all attributes to remain unchanged—

except for file length—but lets the file be reset to length zero and its file space

released.

9

4. FileTypes

5. AccessMethods

1. SequentialAccess

 Dataisaccessedonerecordrightafteranotherisanorder.

 Readcommand causeapointer tobemovedaheadby one.

 Writecommand allocatespacefortherecordand movethepointertothenewEnd Of

 File.

 Suchamethodisreasonablefor tape.

2. DirectAccess

 Thismethod is useful fordisks.

 Thefileisviewed asanumberedsequence ofblocks or records.

 There are no restrictions on which blocks are read/written, it can be dobe in

anyorder.

 Usernowsays"readn"ratherthan"readnext".

 "n"isanumberrelativetothebeginningoffile,notrelativetoanabsolute physical disk

location.

10

As a simple example, on an airline – reservation system, we might store all

the information about a particular flight (for example, flight 713) in the block identified

by the flight number.

Thus, the number of available seats for flight 713 is stored in block 713 of the

reservationfile.Tostoreinformationaboutalargerset,suchaspeople,wemight compute a hash

function on the people’s names, or search a small in-memory index to determine a

block to read and search.

3. IndexedAccess

 Ifafilecan be sorted on any ofthe filed then an index can be assigned to agroup of

certain records.

 However,Aparticular recordcanbeaccessed byitsindex.

 Theindexis nothing buttheaddressof arecordinthe file.

 In index accessing, searching in a large database became very quick and easy but

we need to have some extra space in the memory to store the index value.

6. DirectoryStructure

 Directory can bedefinedasthelisting oftherelatedfilesonthedisk.

 Thedirectorymay storesomeortheentirefileattributes.

 Each partition must have at least one directory in which, all the files

ofthe partition can be listed.

 Adirectoryentryismaintainedforeachfileinthedirectory whichstores all the

information related to that file.

Operationsthataretobeperformedonadirectory
Search for a file. We need to be able to search a directory structure to find the

entryforaparticularfile.Sincefileshavesymbolicnames,andsimilarnames

11

may indicate a relationship among files, we maywant to be able to find all files

whose names match a particular pattern.

Createafile.Newfilesneedtobecreated andaddedtothedirectory.

Delete a file. When a file is no longer needed, we want to be able to remove it

from the directory.

List a directory. We need to be able to list the files in a directory and the contents

of the directory entry for each file in the list.

Renamea file. Becausethenameofa filerepresents its contents to itsusers,we

must be able to change the name when the contents or use of the file changes.

Renaming a file may also allow its position within the directory structure to be

changed.

Traverse the file system. We may wish to access every directory and every file

within a directory structure. For reliability, it is a good idea to save the contents

and structure of the entire file system at regular intervals.

Often,wedo thisby copyingall files to magnetictape.Thistechnique

provides a backup copy in case of system failure.

In addition, if a file is no longer in use, the file can be copied to tape and the

disk space of that file released for reuse by another file.

LogicalStructure(or) LevelofDirectory

 Single-leveldirectory

 Two-leveldirectory

 Tree-Structureddirectory

 AcyclicGraphdirectory

 GeneralGraphdirectory

Single–Level Directory

 Thesimplestmethod isto haveonebiglistofallthefilesonthedisk.

 The entire system will contain only one directory which is supposed

tomention all the files present in the file system.

 Thedirectorycontains oneentry pereachfilepresenton thefilesystem.

Disadvantages

1. Wecannot havetwofileswith thesame name.

2. The directory may be very big therefore searching for a file may take so much

time.

3. Protectioncannotbeimplementedformultipleusers.

4. Thereareno waysto groupsamekind of files.

12

TwoLevelDirectory

 Intwoleveldirectory systems,wecancreateaseparatedirectoryforeachuser.

 There is one master directory which contains separate directories dedicated to

eachuser.Foreachuser,thereisadifferentdirectorypresentatthesecondlevel,

containing group of user's file.

 The system doesn't let a user to enter in the other user's directory without

permission.

Characteristicsoftwoleveldirectorysystem

1. Eachfileshas apathnameas/User-name/directory-name/

2. Differentuserscanhave thesamefilename.

3. Searchingbecomesmoreefficientasonlyoneuser'slistneedstobe traversed.

TreeStructuredDirectory

 Tree structured directory system overcomes the drawbacks of two level

directory system.

 Thesimilar kindoffiles cannow begroupedin onedirectory.

 Eachuserhasitsowndirectoryanditcannotenterintheotheruser's directory.

 Searchingismoreefficientinthisdirectory structure

Afilecan beaccessedbytwo typesofpath,either 1.Relative or2. Absolute.

1. Absolutepathis thepath ofthefilewithrespecttotherootdirectory ofthesystem.

13

2. Relativepathisthepathwithrespectto thecurrentworkingdirectoryofthesystem

Acyclic-GraphStructuredDirectories

 When the same files need to be accessed in more than one place in the

directory structure it can be useful to provide an acyclic-graph structure.

 In this system two or more directory entry can point to the same file

orsub directory. That file or sub directory is shared between the two directory entries.

It provides two types of links for implementing the acyclic-graph structure

Softlink,thefilejustgetsdeleted andweareleft withadangling

pointer.

Hardlink,theactualfilewillbedeletedonlyifallthereferencestoit gets

deleted.

GeneralGraph Directory

 Ingeneral graphdirectorystructure,cyclesareallowedwithinadirectory

structure where multiple directories can be derived from more than one parent

directory

 Themainproblemwiththiskindofdirectorystructureistocalculatetotal size or

space that have been taken by the files and directories.

7. FileSystem Mounting

 Before you can access the files on a file system, you need to mount

thefile system.

14

 Mountingafilesystemattachesthatfilesystemtoadirectory(mount point) and

makes it available to the system.

 The root (/) file system is always mounted. Any other file system can be

connected or disconnected from the root (/) file system.

 When you mount a file system, any files or directories in the underlying

mount point directory are unavailable as long as the file system is mounted.

 Thesefilesare notpermanentlyaffectedbythemountingprocess,and they

become available again when the file system is unmounted.

 However, mount directories are typically empty, because you usually do

not want to obscure existing files.

8. FileSharing

 Filesharing is theaccessing or sharingoffiles byoneor moreusers.

 Filesharingisperformedoncomputernetworksasaneasyandquickwayto transmit

data.

Forexample,ausermayshareaninstructiondocumentonhis

computer that is connected to a corporate network allowing all other

employees to access and read that document.

1. MultipleUsers

 Onamulti-usersystem,moreinformationneedstobestoredforeach file:The

owner (user) who owns the file, and who can control its access.

15

 Thegroupofotheruser IDsthat mayhavesomespecial accesstothefile.

 Whataccessrights areaffordedto the owner(User), theGroup,andto the rest

of the world.

2. RemoteFileSystems

The advent of the Internet introduces issues for accessing files stored on

remotecomputers

 The original method was ftp, allowing individual files to be

transported across systems as needed.

 TheClient-ServerModel(thesystemwhichphysicallyownsthefiles acts

 as a server, and the system which mounts them is the

client.)

 Distributed Information Systems service that runs on a single

central location.

 Failure Modes When a local disk file is unavailable, the

resultisgenerallyknownimmediately,andisgenerallynon-

recoverable. The only reasonable response is for the response to

fail. Remote access systems allow for blocking ordelayed response.

3. ConsistencySemantics

ConsistencySemanticsdealswiththeconsistencybetweentheviewsofsharedfiles

onanetworkedsystem.Whenoneuserchangesthefile,whendootheruserssee the

changes?

1. UNIXSemantics

Writestoanopenfileareimmediatelyvisibletoanyotheruser who has

the file open.

2. Session Semantics

AFSusesthefollowingsemantics:

Writesto anopen filearenotimmediately visibleto otherusers.

Whenafileisclosed,anychangesmadebecomeavailableonlyto users who

open the file at a later time.

3. Immutable-Shared-FilesSemantics

whenafileisdeclaredassharedbyitscreator,itbecomes immutable

and the name cannot be re-used for any other

resource.Henceit becomesread-only,andsharedaccessissimple.

9. FileProtection

 Files must be kept safe for reliability (against accidental damage), and protection(

against deliberate malicious access.) The former is usually managed with backup copies.

This section discusses the latter.

 Onesimpleprotectionschemeistoremoveallaccesstoafile.Howeverthismakesthefile

unusable, so some sort of controlled access must be arranged.

TypesofAccess

 Thefollowinglow-leveloperationsareoftencontrolled:

16

o Read-View thecontentsofthe file

o Write-Changethecontents of the file.
o Execute-Loadthefileonto theCPUandfollowtheinstructionscontained therein.

o Append-Addtotheendofanexistingfile.

o Delete-Remove afilefrom thesystem.

o List -Viewthenameandotherattributes offilesonthesystem.
 Higher-level operations, such as copy, can generally be performed through combinations

of the above.

AccessControl

 One approach is to have complicated Access Control Lists, ACL, which specify exactly

what access is allowed or denied for specific users or groups.

o TheAFS usesthis systemfordistributed access.
o Control is very finely adjustable, but may be complicated, particularly when the

specificusersinvolvedareunknown.(AFSallowssomewildcards,soforexample all
users on a certain remote system may be trusted, or a given username may be
trusted when accessing from any remote system.)

 UNIX uses a set of 9 access control bits, in three groups of three. These correspond to R,

W, and X permissions for each of the Owner, Group, and Others. (See "man chmod" for

full details.) The RWX bits control the following privileges for ordinary files and

directories:

bit Files Directories

R
Read (view)

file contents.

Read directory contents. Required to get a listing

ofthe directory.

W

Write

(change) file

contents.

Change directory contents. Required to create or

delete files.

X

Execute file

contents as a

program.

Accessdetaileddirectoryinformation.Requiredtoget a

long listing, or to access any specific file in the

directory. Note that if a user has X but not R

permissionsonadirectory,theycanstillaccessspecific

files,butonlyiftheyalreadyknowthenameofthefile they

are trying to access.

17

FILESYSTEMIMPLEMENTATION

1. FileSystem Structure

 FileSystemprovideefficientaccesstothediskbyallowingdatatobe stored,

located and retrieved in a convenient way.

 A file System must be able to store the file, locate the file and retrieve the

file.

 Most of the Operating Systems use layering approach for every task

including file systems.

 Everylayerofthefilesystemisresponsibleforsomeactivities.

Logical filesystem

✄ Provides users the view of a contiguous sequence of words, bytes stored

somewhere.

18

✄Usesadirectorystructure,symbolicname

✄Providesprotectionandsecurity

✄OS/userinterface

☎E.g., to create a new file the API provides a call that calls the logical

filesystem

Thefileorganization module

✄Knowsaboutfilesandtheirlogicalblocks(say1,..N)

✄Filesareorganized inblocksof32bytes to4Kbytes

✄Translateslogical blocksinto physical

✄Knowslocation offile,fileallocationtype

✄Includesafreespace managesthat tracksunallocatedblocks

Basicfilesystem

✄Issuescommandstothedevicedriver(layerofsoftwarethatdirectlycontrolsdisk hardware)

to read and write physical blocks on the disk,

✄Eachphysicalblockidentifiedbyadiskaddress(e.g.,drive2,cylinder34,track2, sector 11)

IO control

✄Thelowest levelin thefilesystem

✄Consistsofdevicedriversand interrupt handlers to transfer information betweenthe

memory and the disk

✄Adevicedrivertranslatescommandssuchas“getmeblock111”intohardwarespecific ISA

used by hardware controller. This is accomplished by writing specificbits into IO registers

2. DirectoryImplementation

19

 Directories need to be fast to search, insert, anddelete, with a minimum of wasted

diskspace.

LinearList

 Alinearlist is thesimplest andeasiest directory structureto set up,but it does

have some drawbacks.

 Findingafile(orverifyingonedoes notalreadyexist uponcreation)requires a

linear search.

 Deletions can be done by moving all entries, flagging an entry as deleted,

orby moving the last entry into the newly vacant position.

 Sorting the list makes searches faster, at the expense of more complex

insertions and deletions.

 Alinkedlistmakesinsertionsanddeletionsintoasortedlisteasier,with overhead for

the links.

 Morecomplexdatastructures,suchasB-trees,couldalsobe considered.

HashTable

 Ahashtablecan alsobe used tospeedup searches.

 Hashtablesaregenerallyimplementedinadditiontoalinearorother structure.

 A key-value pair for each file in the directory gets generated and stored in the

hash table.

 Thekeycanbedeterminedbyapplyingthehashfunctiononthefilename while the

key points to the corresponding file stored in the directory.

 SearchingOnlyhashtableentriesarecheckedusingthekeyandifanentry found

then the corresponding file will be fetched using the value.

3. AllocationMethods

20

 Therearevarious

methods which can be used to allocate disk space to the files. Selection of an

appropriate allocation method will significantly affect the performance and

efficiency of the system.

 Allocation method

providesawayin whichthediskwillbeutilizedandthefileswillbeaccessed.

Contiguous Allocation

 If the blocks are allocated to the file in such a way that all the logical blocks of the

filegetthecontiguousphysicalblockintheharddiskthensuchallocationschemeisknownas

contiguous allocation.

 Intheimageshownbelow, therearethreefiles inthedirectory.

 The starting block and the length of each file are mentioned in the table.We can check in

the table that the contiguous blocks are assigned to each file as per its need.

 Allthesealgorithms sufferfromtheproblemofexternalfragmentation.

 As files are allocated and deleted, the free disk space is broken into little pieces.

External fragmentation exists whenever free space is broken into chunks.

 It becomes a problem when the largest contiguous chunk is insufficient for a

request;storageisfragmentedintoanumberofholes,noneofwhichislarge enough to

store the data.

 Thisschemeeffectivelycompactsallfreespaceintoonecontiguousspace,solving the

fragmentation problem.

Advantages

 Itissimpletoimplement.

 Wewill getExcellentreadperformance.

 SupportsRandomAccessintofiles.

Disadvantages

 Thedisk willbecome fragmented.

 Itmay bedifficult tohaveafilegrow.

21

LinkedList Allocation

 LinkedListallocation solvesallproblemsofcontiguousallocation.

 Inlinkedlistallocation,eachfileisconsideredasthelinkedlistofdiskblocks.

 However, the disks blocks allocated to a particular file need not to be contiguous on the

disk.

 Each disk block allocated to a file contains a pointer which points to the next disk block

allocated to the same file.

 Forexample,afileoffiveblocksmightstartatblock9andcontinueatblock16,thenblock 1, then

block 10, and finally block 25 (See Figure). Each block contains a pointerto the next

block. These pointers are not made available to the user. Thus, if each block is512

bytesinsize,andadiskaddress(thepointer)requires4bytes,thentheusersees blocksof 508

bytes.

FileAllocation Table

 The main disadvantage of linked list allocation is that the Random access to a particular

blockisnotprovided.Inordertoaccessablock,weneedtoaccessallitspreviousblocks.

 File Allocation Table overcomes this drawback of linked list allocation. In this scheme, a

file allocation table is maintained, which gathers all the disk block links. The table has

one entry for each disk block and is indexed by block number.

 Fileallocationtableneedstobecachedinorderto reducethenumberofheadseeks.Now

theheaddoesn'tneedtotraverseallthediskblocksinordertoaccessonesuccessiveblock.

22

Advantages

 Thereisnoexternal fragmentationwithlinkedallocation.

 Anyfreeblockcanbeutilized inorder tosatisfythefileblock requests.

 Filecan continueto growas long asthefreeblocks areavailable.

 Directory entrywill onlycontain thestartingblock address.

Disadvantages

 RandomAccessisnot provided.

 Pointersrequiresomespaceinthedisk blocks.

 Anyofthepointersinthelinkedlistmustnotbebrokenotherwisethefilewillget corrupted.

 Needtotraverseeach block.

IndexedAllocation

 Indexedallocationsolvesthisproblembybringingallthepointerstogetherintoone location: the

index block.

 Eachfilehasitsown indexblock,whichis anarrayofdisk-block addresses.

 The ith entry in the index block points to the ith block of the file. The directory contains

the address of the index block.

 Tofindandreadtheithblock,weusethepointerintheithindex-blockentry.This scheme is

similar to the paging scheme.

 Whenthefileiscreated,all pointersintheindexblockaresetto null.

 When the ith block is first written, a block is obtained from the free-space manager, and

its address is put in the ith index-block entry.

 Indexed allocation supports direct access, without suffering from external fragmentation,

because any free block on the disk can satisfy a request for more space.

Advantages

1. Supportsdirectaccess

2. Abaddatablockcausesthelost of onlythat block.

Disadvantages

1. Abadindexblock couldcausethe lostofentirefile.

23

2. Sizeof afiledepends uponthe numberofpointers,aindex block can hold.

3. Havingan indexblock forasmall fileis totallywastage.

4.Morepointeroverhead

4. FreeSpaceManagement

Since disk space is limited, we need to reuse the space from

deleted files for new files, if possible. To keep track of free disk space, the system

maintains a free-space list. The free-space list records all free disk blocks – those not

allocated to some file or directory.

To create a file, we search the free-space list for the required amount of space,

and allocate that space to the new file. This space is then removed from the free-space

list. When a file is deleted, its disk space is added to the free-space list.

1. BitVector

The free-space list is implemented as a bit map or bit vector. Each block is

represented by 1 bit.

If the block is free, the bit is 1; if the block is allocated, the bit is 0. For example,

Consideradiskwhereblock2,3,4,5,8,9,10,11,12,13,17,18,25,26and27arefree,and the

rest of the block are allocated. The free space bit map would be

001111001111110001100000011100000 …

Themainadvantage ofthisapproach isitsrelatively simplicityandefficiencyin

finding the first free block, or n consecutive free blocks on the disk.

2. Linked List

Another approach to free-space management is to link together all the free disk

blocks, keeping a pointer to the first free block in a special location on the disk and

caching it in memory. This first blockcontains apointerto thenext freedisk block,and so

on.

Inourexample,wewouldkeepapointertoblock2,asthefirstfreeblock.Block 2 would

contain a pointer to block 3, which would point to block 4, which would point

toblock5,whichwouldpointtoblock8,andsoon.However,thisschemeisnotefficient; to

traverse the list, we must read each block, which requires substantial I/O time. The FAT

method incorporates free-block accounting data structure. No separate method is

needed.

24

3. Grouping

Amodification ofthefree-list approach is to store theaddressesofn freeblocks in

the first free block. The first n-1 of these blocks are actually free. The last block

contains the addresses of another n free blocks, and so on. The importance of this

implementation is that the addresses of a large number of free blocks can be found

quickly.

4. Counting

We can keep the address of the first free block and the number n of free

contiguousblocksthatfollowthefirstblock.Eachentryinthefree-spacelistthenconsists of a

disk address and a count. Although each entry requires more space than would a simple

disk address, the overall list will be shorter, as long as the count is generally greater

than1.

5. EfficiencyandPerformance

25

Efficiency

 The efficient use of disk space depends heavily on the disk-allocation and directory

algorithms in use.

 Let’s reconsider the clustering scheme, which improves file-seek and file-transfer

performance at the cost of internal fragmentation. To reduce this fragmentation, BSD

UNIX varies the cluster size as a file grows. Large clusters are used where they can be

filled, and small clusters are used for small files and the last cluster of a file. This

 The types of data normally kept in a file’s directory (or inode) entry also require

consideration.Commonly,a“lastwritedate”isrecordedtosupplyinformationtotheuser and to

determine whether the file needs to be backed up. Some systems also keep a “last access

date,” so that a user can determine when the file was last read.

 The result of keeping this information is that, whenever the file is read, a field in the

directory structure must be written to. That means the block must be read into memory, a

sectionchanged,andtheblockwrittenbackouttodisk,becauseoperationsondisksoccur only in

block (or cluster) chunks. So any time a file is opened for reading, its directory entry

must be read and written as well.

 Generally, every data item associated with a file needs to be considered for its effect on

efficiency and performance.

Performance

 Some systems maintain a separate section of main memory for a buffer cache, where

blocks are kept under the assumption that they will be used again shortly. Other systems

cache file data using a page cache.

 The page cache uses virtual memory techniques to cache file data as pages rather than as

file-system-oriented blocks.

 Caching file data using virtual addresses is far more efficient than caching through

physicaldiskblocks,asaccessesinterfacewithvirtualmemoryratherthanthefilesystem.

 Several systems—including Solaris, Linux, and Windows —use page caching to cache

both process pages and file data. This is known as unified virtual memory.

26

 Thetwoalternativesforopeningandaccessingafile.Oneapproach is to

use memory mapping the second is to use the standard system calls read() and write().

 Here, the read() and write() system calls go through the buffer

cache.

 The memory-mapping call, however, requires using two caches—

the page cache and the buffer cache.

 A memory mapping proceeds by reading in disk blocks from the

filesystemandstoringtheminthebuffercache.Becausethevirtualmemorysystemdoes not

interface with the buffer cache, the contents of the file in the buffer cache must be

copied into the page cache. This situation, known as double caching,requirescaching

file-system data twice.

6. Recovery

ConsistencyChecking

 Thestoring ofcertain datastructures (e.g. directories and inodes)in memoryand

thecachingofdiskoperationscanspeedupperformance,butwhathappensintheresult of a

system crash? All volatile memory structures are lost, and the information stored on

the hard drive may be left in an inconsistent state.

 A Consistency Checker (fsck in UNIX, chkdsk or scandisk in Windows) is often

run at boot time or mount time, particularly if a filesystem was not closed down

properly. Some of the problems that these tools look for include:

 Diskblocksallocatedtofilesandalsolistedonthefreelist.

 Diskblocksneitherallocatedtofilesnoronthefreelist.

 Diskblocksallocatedto morethan onefile.

 Thenumberof disk blocks allocated to afileinconsistent with the

file's stated size.

 Properly allocated files / inodes which do not appear in any

directory entry.

 Linkcountsforaninodenotmatchingthenumberofreferencestothat inode in the

 directory structure.

 Twoormoreidentical filenames inthesame directory.

 Illegally linked directories, e.g. cyclical relationships where those

arenotallowed,orfiles/directoriesthatarenotaccessiblefromtherootofthe

directory tree.

 Consistency checkers will often collect questionable disk blocks

into new files with names such as chk00001.dat. These files may contain

valuable information that would otherwise be lost, but in most cases theycan

be safely deleted, (returning those disk blocks to the free list.)

UNIX caches directory information for reads, but any changes that affect space

allocationormetadata changesarewrittensynchronously,beforeanyofthecorresponding data

blocks are written to.

Log-StructuredFileSystems

 Log-based transaction-oriented (a.k.a. journaling) filesystems

borrowtechniquesdevelopedfordatabases,guaranteeingthatanygiventransaction

either completes successfully or canbe rolled back to a safe state before the

transaction commenced:

27

 Allmetadatachangesarewrittensequentiallytoalog.

 Aset ofchangesforperforming aspecifictask (e.g. moving afile

)is atransaction.

 As changes are written to the log they are said to be committed,

allowing the system to return to its work.

 In the meantime, the changes from the log are carried out on the

actual filesystem, and a pointer keeps track of which changes in the log

have been completed and which have not yet been completed.

 When all changes corresponding to a particular transaction have

been completed, that transaction can be safely removed from the log.

 At any given time, the log will contain information pertaining to

uncompleted transactions only, e.g. actions that were committed but for

which the entire transaction has not yet been completed.

 Fromthelog,theremainingtransactionscanbecompleted,orifthe

transaction was aborted, then the partially completed changes can be

undone.

BackupandRestore

 Inordertorecoverlostdataintheeventofadiskcrash,itis important to

conduct backups regularly.

 Files should be copied to some removable medium, such as

magnetic tapes, CDs, DVDs, or external removable hard drives.

 A full backup copies every file on a file system.Incremental

backupscopyonlyfileswhichhave changedsincesomeprevious time.

 A combination of full and incremental backups can offer a

compromisebetweenfullrecoverability,thenumberandsizeofbackuptapes

needed, and the number of tapes that need to be used to do a full restore.

 Atypicalbackup schedulemaythen beas follows:

Day1.Copytoabackupmediumallfilesfromthedisk.Thisiscalleda full

backup.

Day2.Copytoanothermediumallfileschangedsinceday1.Thisisan

incremental backup.

Day3.Copytoanothermediumall fileschangedsinceday 2.

I/O SYSTEMS

1. I/OHardware

DayN.CopytoanothermediumallfileschangedsincedayN−1.Then go

back to day 1.

The role of the operating system in computer I/O is to manage and control I/O

operationsand I/O devices.Adevicecommunicateswithacomputersystembysending

signals over a cable or even through the air.

Port: The device communicates with the machine via a connection point (or

port), for example, a serial port.

28

Bus:Ifoneormoredevicesuseacommonsetofwires,the connection is

called a bus.

Daisychain:Device‗A‘hasacablethatplugsintodevice‗B‘,anddevice

‗B ‘has a cable that plugs into device ‗C ‘, and device ‗C ‘plugs into a port

onthecomputer,thisarrangementiscalledadaisychain.Adaisychainusually

operates as a bus.

PCbus structure

APCIbusthatconnectstheprocessor-memorysubsystemtothefastdevices,and an

expansion bus that connects relatively slow devices such as the keyboard and serial and

parallel ports. In the upper- right portion of the figure, four disks are connected together

on a SCSI bus plugged into a SCSI controller.

Acontrollerorhostadapterisacollectionofelectronicsthatcanoperateaport,

abus,oradevice.Aserial-portcontrollerisasimpledevicecontroller.Itisasinglechip

inthecomputerthatcontrolsthesignalsonthewiresofaserialport.By contrast,aSCSI bus

controller is not simple.
BecausetheSCSIprotocoliscomplex,theSCSIbuscontrollerisoftenimplemented as a

separate circuit board. It typically contains a processor, microcode, and some private

memory. Some devices have their own built- in controllers.

Howcantheprocessorgivecommandsanddatatoacontrollertoaccomplish anI/Otransfer?

o DirectI/Oinstructions

o Memory-mappedI/O

DirectI/Oinstructions
Use special I/O instructions that specify the transfer of a byte or word to an I/O port

address.TheI/Oinstructiontriggersbuslinestoselecttheproperdeviceandtomovebitsintoor out of a

device register

Memory-mappedI/O
Thedevice-controlregistersaremappedintotheaddressspaceoftheprocessor.TheCPU

executes I/O requests using the standard data-transfer instructions to read and write the device-

control registers.

29

Statusregister

Readbythehosttoindicatestatessuchas whetherthecurrentcommand

hascompleted,whethera byteisavailabletobereadfrom thedata-in

register,andwhethertherehasbeenadevice error.

Controlregister Writtenby thehost tostart acommand orto changethemodeof adevice.

data-inregister Readby thehost toget input

data-outregister Writtenby thehost to send output

 An I/O port typically consists of four registers: status, control, data-in, and

data-out registers.

1. Polling

Interactionbetweenthe hostandacontroller

 Thecontrollersetsthebusybitwhenitisbusyworking,andclearsthebusybit when it is

ready to accept the next command.

 The host sets the command ready bit when a command is

availablefor the controller to execute.

Coordinationbetweenthehost&thecontrolleris donebyhandshakingasfollows:

1. Thehostrepeatedly readsthebusy bituntilthat bitbecomesclear.

2. The host sets the write bit in the command register and writes a byte into the

data-out register.

3. Thehostsetsthecommand-readybit.

4. Whenthecontrollernoticesthatthecommand-readybit isset,itsetsthebusy bit.

5. The controller reads the command register and sees the write command.

Itreadsthedata-outregistertogetthebyte,anddoestheI/Otothedevice.

6. The controller clears the command-ready bit, clears the error bit in the

status register to indicate that the device I/O succeeded, and clears the

busy bit to indicate that it is finished.

7. In step 1, the host is ―busy-waiting or polling‖: It is in a loop,

reading the status register over and over until the busy bit becomes

clear.

2. Interrupts

TheCPUhardwarehasawirecalledthe―interrupt-requestline‖. The

basic interrupt mechanism works as follows;

30

1. Device controller raises an interrupt by asserting a signal on the interrupt

request line.

2. TheCPUcatchestheinterruptanddispatchestotheinterrupthandlerand

3. Thehandlerclearstheinterruptbyservicingthedevice.

 Nonmaskable interrupt: which is reserved for events such as unrecoverable

memory errors?

 Maskableinterrupt:Usedbydevicecontrollerstorequestservice

3. DirectMemoryAccess (DMA)

In general it is tough for the CPU to do the large transfers between the memory

buffer&disk;becauseitisalreadyequippedwithsomeothertasks,thenthiswill create

overhead. So a special-purpose processor called a direct memory-access (DMA)

controller is used.

31

2. ApplicationI/OInterface

I/O system calls encapsulate device behaviours in generic classes. Device-driver layer

hides differences among I/O controllers from kernel
Devicesvaryonmanydimensions,asillustrated in

• Character-streamorblock.Acharacter-streamdevicetransfersbytesonebyone,

whereas a block device transfers a block of bytes as a unit.

• Sequentialorrandomaccess.Asequentialdevicetransfersdatainafixed order

determined by the device, whereas the user of a random-access device can instruct
the device to seek to any of the available data storage locations.

• Synchronousorasynchronous.Asynchronousdeviceperformsdatatransferswith

predictable response times, in coordination with other aspects of the system. Anasynchronous

device exhibits irregular or unpredictable response times not

coordinatedwithothercomputerevents.
• Sharableordedicated.Asharabledevicecanbeusedconcurrentlybyseveral

processes or threads; a dedicated device cannot.
Speedofoperation.Devicespeedsrangefromafewbytespersecondtoafew gigabytes per

second.

• Read–write,readonly,orwriteonly.Somedevicesperformbothinputand

output, but others support only one data transfer direction.

1. BlockandCharacterDevices

Block-device: The block-device interface captures all the aspects necessary for

accessing disk drives and other block-oriented devices. The device should understand the

commands such as read () & write (), and if it is a random access device, it has a seek()

command to specify which block to transfer next.

CharacterDevices:Akeyboardisanexampleofadevicethatisaccessedthrough a

character stream interface. The basic system calls in this interface enable an

application to get() or put() one character.

2. NetworkDevices

Becausetheperformanceandaddressingcharacteristics ofnetworkI/Odiffer

32

significantlyfromthoseofdiskI/O,mostoperatingsystemsprovideanetworkI/O interface that

is different from the read0

-write()-seek()interfaceusedfordisks.

 WindowsNTprovidesoneinterfacetothenetworkinterfacecard, and a

second interface to the network protocols.

 InUNIX,wefindhalf-duplexpipes,full-duplexFIFOs,full- duplex

STREAMS, message queues and sockets.

3. Clocks and Timers

Mostcomputershavehardwareclocksandtimersthatprovidethreebasicfunctions:

 Givethecurrenttime

 Givetheelapsedtime

 SetatimertotriggeroperationXattimeT

Programmable interval timer: The hardware to measure elapsed time and to trigger

operationsiscalledaprogrammableintervaltimer.Itcanbesettowaitacertainamountof time and

then to generate an interrupt. To generate periodic interrupts, it can be set todo this

operation once or to repeat.

UsesofProgrammableinterval timer:

Scheduler

Togenerateaninterrupt thatwillpre-emptaprocessat theendofits

timeslice.

DiskI/Osubsystem Toinvoketheflushingof dirtycachebufferstodiskperiodically

Network subsystem

Tocanceloperationsthoseareproceedingtooslowlybecauseof

networkcongestion orfailures.

Whenthetimerinterrupts,thekernelsignalstherequester,andreloadsthe timer with

the next earliest time.

Counter:Thehardware clock isconstructedfromahighfrequencycounter.

In some computers,the valueofthis counter canbereadfrom adevice register,in which

the counter can be considered to be a high-resolution clock.

4. Blocking and Non-blocking I/O (or) synchronous & asynchronous: Blocking

I/O: When an application issues a blocking system call;

 Theexecution ofthe application issuspended.

 Theapplication ismovedfromtheoperatingsystem'srunqueuetoawait queue.

 After the system call completes, the application is moved back to the run

queue,whereitis eligibletoresume execution,at whichtime itwillreceive the

values returned by the system call.

33

Non-blocking,I/O:Someuser-level processesneednon-blocking

I/OExamples:

Userinterfacethatreceiveskeyboardandmouseinputwhileprocessing and

displaying data on the screen.

Videoapplication that reads frames from afile on disk while

simultaneously decompressing and displaying the output on the display.

3. KernelI/O Subsystem

KernelsprovidemanyservicesrelatedtoI/O.

 One way that the I/O subsystem improves the efficiency of the computer is by

scheduling I/O operations.

 Another way is by using storage space in main memory or on disk, via

techniques called buffering, caching, and spooling.

1. I/O Scheduling:

Todetermineagoodorderinwhich toexecutethesetof I/Orequests.Uses:

 Itcanimproveoverallsystemperformance,

 Itcansharedeviceaccessfairlyamongprocesses, and

 Itcanreducetheaveragewaitingtimefor1/0to complete.

Implementation:OSdevelopersimplementschedulingbymaintaininga

―queueofrequests foreachdevice.

 WhenanapplicationissuesablockingI/Osystemcall,

 Therequest is placedon thequeueforthat device.

 The I/O scheduler rearranges the order of the queue to improve the overall system

efficiency and the average response time experienced by applications.

2. Buffering:

Buffer: A memory area that stores data while they are transferred between two

devices or between a device and an application.

Reasonsforbuffering:

 To cope with a speed mismatch between the producer and consumer of a

datastream.

 Toadaptbetweendevicesthathavedifferentdata-transfer sizes.

 TosupportcopysemanticsforapplicationI/O.

Copy semanticsSuppose that an application has a buffer of data that itwishes to

write to disk. It calls the write () system call, providing a pointer to the buffer and an

integer specifying the number of bytes to write.

3. Caching

Acacheisaregionoffastmemorythatholdscopiesofdata.Accesstothecached copy is

more efficient than access to the original
Cache vs buffer: A buffer may hold the onlyexisting copy ofa data item,whereas a

cache just holds a copy on faster storage of an item that resides elsewhere.

WhenthekernelreceivesafileI/Orequest,

1. Thekernelfirstaccessesthebuffercachetoseewhetherthatregionofthefile is

already available in main memory.

34

2. If so, a physical disk I/O can be avoided or deferred. Also, disk writes are

accumulated in the buffer cache for several seconds, so that large transfers are gathered

to allow efficient write schedules.

4. SpoolingandDeviceReservation:

Spool:Abufferthatholdsoutputforadevice,suchasaprinter,thatcannotaccept

interleaved data streams.

Aprintercanserveonlyonejobatatime,severalapplicationsmaywishtoprint their

output concurrently, without having their output mixed together

TheOSprovidesacontrolinterfacethatenablesusersandsystemadministrators;

 Todisplaythe queue,

 Toremoveunwantedjobsbeforethosejobs print,

 Tosuspendprintingwhiletheprinterisserviced,andsoon.

Devicereservation-providesexclusiveaccess toa device

 Systemcallsforallocationandde-allocation

 Watchoutfordeadlock

5. Error Handling

An operating system that uses protected memory can guard against many kinds

of hardware and application errors. OS can recover from disk read, device unavailable,

transientwritefailuresMostreturnanerrornumberorcodewhenI/OrequestfailsSystem error

logs hold problem reports

STREAMS

Streamisafull-duplexcommunicationchannelbetweenauser-levelprocess

andadevicein Unix SystemVand beyondASTREAMconsists of:

 STREAMheadinterfaces withtheuserprocess

 Driverendinterfaces withthe device

 ZeroormoreSTREAMmodulesbetweenthem.

Each module contains a read queue and a write queue. Message passing is used

to communicate between queues. Modules provide the functionality of STREAMS

processing and they are pushed onto a stream using the ioct () system call.

Flow control: Because messages are exchanged between queues in adjacent

modules, a queue in one module may overflow an adjacent queue. To prevent this from

occurring, a queue may support flow control.

35

PERFORMANCE

I/Oamajorfactorin systemperformance:

 Heavy demands on CPU to execute device driver, kernel I/O code. So context

switches occur due to interrupts.

 Interrupt handling is a relatively expensive task: Each interrupt causes the

system to perform a state change, to execute the interrupt handler & then to

restore state

 Networktrafficespeciallystressful.

 Systems use separate ―front-end processors” for terminal I/O, to reduce the

interrupt burden on the main CPU.

Wecanemployseveral principlestoimprovetheefficiencyofI/O:

 Reducethenumber ofcontext switches.

 Reducethenumberoftimesthatdatamustbecopiedinmemorywhile passing

between device and application.

 Reduce the frequency of interrupts by using large transfers, smart controllers

&polling.

 Increase concurrency by using DMA-knowledgeable controllers or channels to

offload simple data copying from the CPU.

 Move processing primitives into hardware, to allow their operation in

devicecontrollers concurrent with the CPU and bus operation.

 BalanceCPU,memorysubsystem,bus,andI/Operformance,becausean

overload in any one areawill cause idleness in others.

36

a) An application-level implementation: Implement experimental I/O

algorithms at the application level, because application code is flexible, and application

bugs are unlikely to cause system crashes.

Itcan beinefficient;

 Becauseoftheoverheadofcontextswitches and

 Because the application cannot take advantage of internal kernel data

structures and kernel functionality

b) In-kernelimplementation:Re-implementapplication-levelalgorithminthe

kernel. This can improve the performance, but the development effort is more

challenging, because an operating-system kernel is a large, complex software system.

Moreover, an in-kernel implementation must be thoroughly debugged to avoid data

corruption and system crashes.

c) Ahardwareimplementation:Thehighestperformancemaybeobtainedby a

specialized implementation in hardware, either in the device or in the controller.

 Difficult and expense of making further improvements or of

fixing bugs, (-) Increased development time

 Decreasedflexibility.

UNITV CASE STUDY

Linux System - Design Principles, Kernel Modules, Process Management, Scheduling, Memory

Management,Input-OutputManagement,FileSystem,Inter-processCommunication;MobileOS

- iOS and Android - Architecture and SDK Framework, Media Layer, Services Layer, Core OS

Layer, File System.

1. LINUXSYSTEM

 LinuxHistory

 Itsdevelopmentbeganin1991,whenaFinnishuniversitystudent,LinusTorvalds,

began developing a small but self-contained kernel for the 80386 processor, the

first true 32-bit processor in Intel’s range of PC-compatible CPUs.

 Early in its development, the Linux source code was made available free— bothat

no cost and with minimal distributional restrictions—on the Internet.

 The Linux kernel is an original piece of software developed from scratch by the

Linux community.

 TheLinuxsystem,includesamultitudeofcomponents,somewrittenfromscratch,

others borrowed from other development projects, and still others created in

collaboration with other teams.

 A Linux distribution includes all the standard components of the Linux system,

plus a set of administrative tools to simplify the initial installation and subsequent

upgrading of Linux and to manage installation and removal of other packages on

the system.

 TheLinux Kernel

 The first Linux kernel released to the public was version 0.01, dated May

14, 1991. It had no networking, ran only on 80386-compatible Intel

processors and PC hardware, and had extremely limited device-driver

support.

 Thenextmilestone,Linux1.0,wasreleasedonMarch14,1994.

 This release culminated three years of rapid development of the Linux

kernel.Perhapsthesinglebiggestnewfeaturewasnetworking:1.0included

support for UNIX’s standard TCP/IP networking protocols such as socket

interface for networking programming.

 In March 1995, the 1.2 kernel was released. This release did not offer

nearly the same improvement in functionality as the 1.0 release, but it did

supportamuchwidervarietyofhardware,includingthenewPCIhardware bus

architecture.

 In June 1996 as Linux version 2.0was released. This release was given a

major version-number increment because of two major new capabilities:

supportformultiplearchitectures,includinga64-bitnativeAlphaport,and

symmetric multiprocessing (SMP) support

 Improvements continued with the release of Linux 2.2 in 1999. A port to

UltraSPARCsystemswasadded.Networkingwasenhancedwithmore

flexiblefirewalling,improvedroutingandtrafficmanagement,andsupport for

TCP large window and selective acknowledgement.

 Linuxkernelversion3.0wasreleasedinJuly2011.

2. DESIGN PRINCIPLES

 Linuxrunson awidevarietyofplatforms, itwas originallydeveloped exclusively on

PC architecture.

 Linux can run happily on a multiprocessor machine with many gigabytes of main

memory and many terabytes of disk space, but it is still capable of operating

usefully in under 16 MB of RAM.

ComponentsofaLinux System

TheLinuxsystemis composedofthreemainbodiesof code

1. Kernel. Thekernel is responsible formaintaining all the important abstractions

of the operating system, including such things as virtual memory and processes.

2. Systemlibraries.Thesystemlibrariesdefineastandardsetoffunctionsthrough

which applications can interact with the kernel. These functions implement much

oftheoperating-systemfunctionalitythatdoesnotneedthefullprivilegesofkernel

code.ThemostimportantsystemlibraryistheClibrary,knownaslibc.Inaddition

toprovidingthestandardClibrary,libcimplementstheusermodesideoftheLinux

system call interface, as well as other critical system- level interfaces.

3. System utilities. The system utilities are programs that perform individual,

specialized management tasks. Some system utilities are invoked just once to

initializeandconfiguresomeaspectofthesystem.Others—knownasdaemonsin UNIX

terminology—run permanently, handling such tasks as responding to incoming

network connections, accepting logon requests from terminals, and updating log

files.

 All the kernel code executes in the processor’s privileged mode with full

access to all the physical resources of the computer.

 Linuxreferstothisprivilegedmodeaskernelmode.

 UnderLinux, no usercodeis built into thekernel.

 Anyoperating-system-supportcodethatdoesnotneedtoruninkernel mode is

placed into the system libraries and runs in user mode.

 Unlike kernel mode, user mode has access only to a controlled subset of

the system’s resources.

3. KERNELMODULES
 TheLinuxkernelhastheabilitytoloadandunloadarbitrarysectionsofkernelcode on

demand.

 Theseloadablekernelmodulesruninprivilegedkernelmodeandasaconsequence

havefull access to all the hardwarecapabilities of the machine on which they run.

 Kernelmodules areconvenientforseveral reasons.

1. Linux’ssourcecodeisfree,soanybodywantingtowritekernelcodeisable to

compile a modified kernel and to reboot into that new functionality.

2. However,recompiling,relinking,andreloadingtheentirekernelisa

cumbersome cycle to undertake when you aredeveloping a new driver.

3. If you use kernel modules, you do not have to make a new kernel to test a

newdriver—thedrivercanbecompiledonitsownandloadedintothealready

running kernel.

 KernelmodulesallowaLinuxsystemto besetupwithastandardminimalkernel,

without any extra device drivers built in.

 Anydevicedriversthattheuserneedscanbeeitherloadedexplicitlybythesystem

atstartuporloadedautomaticallybythesystemondemandandunloadedwhennot in use.

 Forexample,amousedrivercanbeloadedwhenaUSBmouseispluggedintothe system

and unloaded when the mouse is unplugged.

1. The module-management system allows modules to be loaded into memory

and to communicate with the rest of the kernel.

2. Themoduleloaderandunloader,whichareuser-modeutilities,workwiththe

module-management system to load a module into memory.

3. Thedriver-registrationsystemallowsmodulestotelltherestofthekernelthat a new

driver has become available.

4. A conflict-resolution mechanism allows different device drivers to reserve

hardware resources and to protect those resources from accidental use by another

driver.

Module Management
 Loading a module requires more than just loading its binary contents into

kernel memory.

 Linuxmaintains aninternalsymbol tablein thekernel.

 Theloading ofthe moduleis performedintwostages.

First,themoduleloaderutility asksthekerneltoreservea continuous

areaofvirtualkernelmemoryforthemodule.Thekernelreturnstheaddress of

the memory allocated, and the loader utility can use this addressto relocate

the module’s machine code to the correct loading address.

Asecondsystemcallthenpassesthemodule,plusanysymboltablethat the

new module wants to export, to the kernel.

DriverRegistration
 provides a set of routines to allow drivers to be added to or

removed.

 Amodulemay registermanytypesoffunctionality

 For example, a device driver might want to register two separate

mechanisms for accessing the device. Registration tables include,

among others, the following items:

Device drivers. These drivers include character devices (such as

printers, terminals, and mice), block devices (including all disk

drives), and network interface devices.

File systems. The file system may be anything that implements

Linux’s virtual file system calling routines. It might implement a

format for storing files on a disk, but it might equally well be a

network file system, such as NFS, or a virtual file system whose

contentsaregeneratedondemand,suchasLinux’s/procfilesystem.

Network protocols. A module may implement an entire

networking protocol, such as TCP or simply a new set of packet-

filtering rules for a network firewall.

Binary format. This format specifies a way of recognizing,

loading, and executing a new type of executable file.

Conflict Resolution
Linuxprovidesacentralconflict-resolutionmechanismtohelparbitrateaccessto

certain hardware resources. Its aims are as follows:

Toprevent modulesfromclashingoveraccesstohardwareresources

 To prevent autoprobes—device-driver probes that auto-detect device

configuration—from interfering with existing device drivers

 To resolve conflicts among multiple drivers trying to access the same

hardware—as, for example, when both the parallel printer driver and the parallel

line IP (PLIP) network driver try to talk to the parallel port

4. PROCESSMANAGEMENT

Aprocess is the basic context in whichall user-requested activity

is serviced within the operating system.

Thefork()andexec()ProcessModel
 The basic principle of UNIX process management is to separate into two

stepstwooperationsthatareusuallycombinedintoone:Thecreationofanewprocess

and the running of a new program.

 A new process is created by the fork()system call, and anew program is runafter a

call to exec().

 Thesearetwodistinctlyseparatefunctions.

 Wecancreateanewprocesswithfork()withoutrunninganewprogram—thenew

subprocess simply continues to execute exactly the same program, at exactly the

same point, that the first (parent) process was running.

1. ProcessIdentity
Aprocessidentityconsistsmainlyofthefollowing items:

ProcessID(PID).Eachprocesshasaunique

identifier.

Credentials.EachprocessmusthaveanassociateduserIDand one

or more group IDs that determine the rights of a process to

access system resources and files.

Personality:Personalitiesareprimarilyusedbyemulationlibraries to

request the system calls be compatible with certain varieties of

UNIX.

Namespace:Each process is associated with aspecificview of the

filesystem hierarchy, calleditsnamespace.Most processes sharea

common namespace and thus operate on a shared file-system

hierarchy.

ProcessEnvironment
Aprocess’senvironmentisinheritedfromitsparentandiscomposedof

twonull-terminatedvectors:theargumentvectorandtheenvironmentvector.

Theargumentvectorsimplyliststhecommand-lineargumentsusedtoinvoketherunning

program; it conventionally starts with the name of the program itself.

The environment vector is a list of “NAME=VALUE” pairs that associates named

environmentvariableswitharbitrarytextualvalues.Theenvironmentisnotheldinkernel

memory but is stored in the process’s own user-mode address space as the first datum at

the top of the process’s stack.

ProcessContext
 Processcontextisthestateoftherunningprogramatanyonetime;itchanges constantly.

Process context includes the following parts:

Scheduling context: The most important part of the processcontext

is its scheduling context—the information that the

scheduler needs to suspend and restart the process. This

information includes saved copies of all the process’s registers.

Accounting: The kernel maintains accounting information about the

resourcescurrentlybeingconsumedbyeachprocessandthetotalresources

consumed by the process in its entire lifetime so far.

File table. The file table is an array of pointers to kernel file structures

representing open files.

File-systemcontext:Whereasthefiletableliststheexistingopenfiles,the file-

system context applies to requests to open new files. The file- system

contextincludestheprocess’srootdirectory,currentworkingdirectory,and

namespace.

Signal-handlertable:Thesignal-handlertabledefinestheactiontotakein

response to a specific signal.

Virtual memory context : The virtual memory context describes the full

contents of a process’s private address space.

2. ProcessesandThreads

 Linux provides the fork() system call, which duplicates a process without loading

a new executable image. Linux also provides the ability to create threads via the

clone() system call.

 The clone() system call behaves identically to fork(), except that it accepts as

arguments a set of flags that dictate what resources are shared between the parent

and child.

 Theflagsinclude

5. SCHEDULING
 SchedulingisthejobofallocatingCPUtimetodifferenttaskswithinanoperating system.

 Linux,likeallUNIXsystems,supportspreemptive multitasking.

 Insuchasystem,theprocessschedulerdecideswhichprocessrunsandwhen.

ProcessScheduling
Linuxhastwoseparateprocess-schedulingalgorithms.

1. Oneis atime-sharingalgorithm forfair,preemptiveschedulingamong

multiple processes.

2. The other is designed for real-time tasks, where absolute priorities are

more important than fairness.

CompletelyFairScheduler(CFS).

 InCFSeachcoreoftheCPUhas itsownrunqueue.

 Each task has a so called nice value and weight assigned to it. The nice

value represents how “kind” the specific task is to other tasks.

 Inotherwords,ataskwithahighnicevaluehasalowerpriorityandisthus less

likely to take more of the CPUs bandwidth than a task with a lownice

value.

 CFS introduced a new scheduling algorithm called fair scheduling that

eliminates time slices in the traditional sense. Instead of time slices, all

processes are allotted a proportion of the processor’s time. CFS

calculates how long a process should run as a function of the total number

of runnable processes.

 To calculate the actual length of time a process runs, CFS relies on a

configurable variable called target latency, which is the interval of time

during which every runnable task should run at least once.

Real-TimeScheduling

 Linux implements the two real-time scheduling classes: first-come, first

served (FCFS) and round-robin.

 Inboth cases,eachprocess hasapriorityinadditiontoitsschedulingclass.

 The scheduler always runs the process with the highest priority. Among

processes of equal priority, it runs the process that has been waiting longest.

 Theonly differencebetween FCFS and round-robin scheduling isthat FCFS

processes continue to run until they either exit or block, whereas a round-

robin process will be preempted after a while and will be moved to the end

of the scheduling queue, so round-robin processes of equal priority will

automatically time-share among themselves.

 Linux’sreal-timeschedulingissoft—andhard—real time.
 A hard real time system guarantees that critical tasks complete on time,

whereas in soft real time system, a critical real time task gets priority over

other tasks and retains that priority until it completes.

KernelSynchronization
 Thewaythekernelschedulesitsownoperationsisfundamentallydifferent from

the way it schedules processes.

 Arequestforkernel-modeexecutioncanoccurintwoways.

 A running program may request an operating-system service, either

explicitly via a system call or implicitly—for example, when a page fault

occurs.

 Alternatively, a device controller may deliver a hardware interrupt that

causes the CPU to start executing a kernel-defined handler for that

interrupt.

 The problem for the kernel is that all these tasks may try to access the

same internal data structures.

 If one kernel task is in the middle of accessing some data structure when

an interrupt service routine executes, then that service routine cannot

access or modify the same data without risking data corruption.

 The Linux kernel provides spinlocks and semaphores (as well as reader–

writer versions of these two locks) for locking in the kernel.

 Linuxusesaninterestingapproachtodisableandenablekernelpreemption.

Itprovidestwosimplekernelinterfaces—preemptdisable()andpreempt

enable().

 Thecounteris incremented when alock is acquired and

decremented when a lock is released.

 Linux implements this architecture by separating interrupt service

routines into two sections: the top half and the bottom half.

The top half is the standard interrupt service routine that

runs with recursive interrupts disabled.

Interrupts of the same number (or line) are disabled, but other

interrupts may run.

The bottom half of a service routine is run, with all interrupts enabled,by

a miniature scheduler that ensures that bottom halves never interrupt

themselves.

Symmetric Multiprocessing

Linux kernel to support symmetric multiprocessor (SMP) hardware, allowing separate

processes to execute in parallel on separate processors. The original implementation of SMP

imposed the restriction that only one processor at a time could be executing kernel code.

6. MEMORYMANAGEMENT

MemorymanagementunderLinuxhastwocomponents.Thefirstdealswithallocatingandfreeing

physical memory—pages, groupsof pages,and small blocksofRAM. Thesecondhandlesvirtual

memory, which is memory-mapped into the address space of running processes.

ManagementofPhysicalMemory

 Due to specific hardware constraints, Linux separates

physical memory into four different zones, or regions:

• ZONE DMA

• ZONEDMA32

• ZONENORMAL

• ZONEHIGHMEM

 ZONE_DMA. This zone contains pages that can undergo

DMA.

 ZONE_DMA32. Like ZOME_DMA, this zone contains

pagesthatcanundergoDMA.UnlikeZONE_DMA,thesepagesareaccessibleonlyby32- bit

devices. On some architectures, this zone is a larger subset of memory.

 ZONE_NORMAL. This zone contains normal, regularly

mapped, pages.

 ZONE_HIGHMEM. This zone contains "high memory",

whicharepagesnotpermanentlymappedintothekernel’saddressspace.Therelationship of

zones and physical addresses on the Intel x86-32 architecture is shown Below

 Theprimaryphysical-memorymanagerintheLinuxkernel is

the page allocator.

 Each zone has its own allocator, which is responsible for

allocating and freeing all physical pages for the zone and is capable of allocating ranges

of physically contiguous pages on request.

 The allocator uses a buddy system to keep track of

available physical pages.

 Eachallocatablememoryregionhasanadjacentpartner(or

buddy).Whenevertwoallocatedpartnerregionsarefreedup,theyarecombinedtoforma larger

region—a buddy heap.

 Another strategy adopted by Linux for allocating kernel

memory is known as slab allocation. A slab is used for allocating memory for kerneldata

structures and is made up of one or more physically contiguous pages. A cache consists

of one or more slabs.

InLinux,aslabmay bein oneofthreepossible states:

1. Full.All objectsintheslabaremarkedasused.

2. Empty.Allobjectsintheslabaremarkedas free.

3. Partial.Theslabconsistsofbothusedandfree objects.

VirtualMemory

 TheLinuxvirtualmemorysystemisresponsibleformaintainingtheaddressspace

accessible to each process.

 Itcreatespagesofvirtualmemoryondemandandmanagesloadingthosepages from

disk and swapping them back out to disk as required.

 UnderLinux,thevirtualmemorymanagermaintainstwoseparateviewsofa

process’s address space: as a set of separate regions and as a set of pages.

1. VirtualMemoryRegions

 Linuximplementsseveraltypesofvirtualmemoryregions.

 Onepropertythatcharacterizesvirtualmemoryisthebackingstorefortheregion, which

describes where the pages for the region come from.

 Mostmemoryregionsare backedeitherby a file orbynothing.

 Aregionbacked bynothing isthesimplest typeofvirtualmemory region.

 Sucharegionrepresents demand-zeromemory:whenaprocesstriestoreadapagein such a

region, it is simply given back a page of memory filled with zeros.

 Avirtualmemoryregionisalsodefinedbyitsreactiontowrites.Themappingofa region

into the process’s address space can be either private or shared.

2. Lifetimeofa Virtual Address Space

 Thekernelcreates anewvirtual addressspaceintwo situations:

 whenaprocessruns anewprogramwiththeexec()systemcallandwhenanew process

is created by the fork() system call.

3. Swappingand Paging
 Animportanttaskforavirtualmemorysystemistorelocatepagesofmemoryfromphysical memory

 out to disk when that memory is needed.

 Thepagingsystemcanbedividedintotwosections.

 First,thepolicyalgorithmdecideswhichpagestowriteouttodiskandwhentowritethem.

 Second,thepagingmechanismcarriesoutthetransferandpagesdatabackintophysical
memory when they are needed again.

4. KernelVirtualMemory

 kernelvirtualmemoryareacontains tworegions.

 Thefirstisastaticareathatcontainspage-tablereferencestoeveryavailablephysical page

of memory in the system, so that a simple translation from physical to virtual

addresses occurs when kernel code is run.

 Theremainderofthekernel’sreservedsectionofaddressspaceisnotreservedforany specific

purpose.

ExecutionandLoadingofUserPrograms

 TheLinuxkernel’sexecutionofuserprogramsistriggeredbyacalltotheexec()system call.

 This exec()call commands thekernel to runanewprogram within thecurrent process,

completelyoverwritingthecurrentexecutioncontextwiththeinitialcontextofthenew

program.

 The first job of this system service is to verify that the calling process has permission

rights to the file being executed.

 NewerLinuxsystemsusethemoremodernELFformat,nowsupportedbymostcurrent UNIX

implementations.

7. INPUTANDOUTPUTMANAGEMENT

 Linuxsplitsalldevicesintothreeclasses:blockdevices,characterdevices, and

network devices.

Block Devices

 Blockdevicesprovidethemaininterfacetoall diskdevicesina system.

 Performance is particularly important for disks, and the block-device

system must provide functionality to ensure that disk access is as fast as

possible.

 ThisfunctionalityisachievedthroughtheschedulingofI/Ooperations.

 In the context of block devices, a block represents the unit with which the

kernel performs I/O.

 Whenablockis readintomemory,itisstoredinabuffer.

 The request manager is the layer of software that manages the reading and

writing of buffer contents to and from a block-device driver.

 Aseparatelist ofrequestsiskeptforeachblock-devicedriver.

 Theserequestshavebeenscheduledaccordingtoa unidirectional-elevator (C-

SCAN) algorithm that exploits the order in which requests are inserted in

and removed from the lists.

 Whenarequestisacceptedforprocessingbyablock-devicedriver,itisnot

removed from the list.

 It is removed only after the I/O is complete, at which point the driver

continues with the next request in the list, even if new requests have been

inserted in the list before the active request.

CharacterDevices

 Acharacter-devicedrivercanbealmostanydevicedriverthatdoesnotoffer

random access to fixed blocks of data.

 Any character-device drivers registered to the Linux kernel must also

register a set of functions that implement the file I/O operations that the

driver can handle.

 Thekernelperformsalmostnopreprocessingofafilereadorwriterequest to

acharacterdevice. It simply passes the request to the devicein question and

lets the device deal with the request.

 A line discipline is an interpreter for the information from the terminal

device.

 The most common line discipline is the tty discipline, which glues the

terminal’sdatastreamontothestandardinputandoutputstreamsofauser’s

runningprocesses, allowingthoseprocessestocommunicatedirectlywith the

user’s terminal

Networkdevices

 Networkdevices aredealt withdifferentlyfromblockandcharacterdevices.

 Users cannot directly transfer data to network devices. Instead, they must

communicate indirectly by opening a connection to the kernel’s networking

subsystem.

8. INTERPROCESSCOMMUNICATION

Linuxprovidesarichenvironmentfor processestocommunicatewitheach other.

SynchronizationandSignals

 The standard Linux mechanism for informing a process that an event has

occurred is the signal.

 Signals can be sent from any process to any other process, with restrictions on

signals sent to processes owned by another user.

 The kernel also generates signals internally. For example, it can send a signalto

a server process when data arrive on a network channel, to a parent process

when a child terminates, or to a waiting process when a timer expires.

 Internally,theLinuxkerneldoesnotusesignalstocommunicatewithprocesses

runninginkernelmode.Ifakernel-modeprocessisexpectinganeventtooccur, it will

not use signals to receive notification of that event.

 Rather, communication about incoming asynchronous events within the kernel

takes place through the use of scheduling states and wait queue structures

 Whenever a process wants to wait for some event to complete, it places itselfon

a wait queue associated with that event and tells the scheduler that it is no

longer eligible for execution.

 Oncetheeventhascompleted,everyprocessonthewaitqueuewillbeawoken.

PassingofDataamong Processes

 Linuxoffersseveralmechanismsforpassingdataamongprocesses.

 The standard UNIX pipe mechanism allows a child process to inherit a

communication channel from its parent; data written to one end ofthe pipe can be

read at the other.

 Under Linux, pipes appear as just another type of inode to virtual file system

software, and each pipe has a pair of wait queues to synchronize the reader and

writer.

 Anotherprocesscommunicationsmethod,sharedmemory,offersanextremelyfast way

to communicate large or small amounts of data.

 Any data written by one process to a shared memory region can be read

immediatelybyanyotherprocessthathasmappedthatregionintoitsaddressspace.

9. FILESYSTEMS
 TheLinuxkernelhandlesalltypesoffilesbyhidingtheimplementationdetailsofanysingle file type

behind a layer of software, the virtual filesystem (VFS).

TheVirtual File System

 The Linux VFS is designed around object-oriented principles. It has two

components:asetofdefinitionsthatspecifywhatfile-systemobjectsareallowed to

look like and a layer of software to manipulate the objects.

 TheVFSdefinesfourmainobject types:

Aninodeobjectrepresents anindividualfile.

Afileobjectrepresents anopenfile.

Asuperblockobjectrepresents anentirefilesystem.

Adentryobjectrepresentsanindividualdirectory entry.
 Foreachofthesefourobjecttypes,theVFS definesasetofoperations.

 Everyobjectof oneofthesetypescontains apointerto afunction table.

 Thefunctiontableliststheaddressesoftheactualfunctionsthatimplementthe

defined operations for that object.

 Forexample,anabbreviatedAPIforsomeofthefileobject’soperations

includes:

int open(...)—Open afile.

ssize t read(. . .) — Read from a file.

ssize t write(. . .) — Write to a

file.intmmap(...)—Memory-mapafile.

TheLinux ext3FileSystem

 Thestandardon-diskfilesystemusedbyLinuxiscalledext3,for

historical reasons.

 LinuxwasoriginallyprogrammedwithaMinix-compatiblefilesystem,to ease

exchanging data with the Minix development system, but that file system

was severely restricted by 14-character file-name limits and a maximum

file-system size of 64 MB.

 The ext3 allocation policy works as follows: As in FFS, an ext3 file

systemispartitionedintomultiplesegments.Inext3,thesearecalled

block groups.

 FFSusesthesimilarconceptofcylindergroups,whereeachgroup

corresponds to a single cylinder of a physical disk.

 Whenallocatingafile, ext3mustfirst selecttheblockgroupforthat file.

 Fordatablocks,itattemptstoallocatethefiletotheblockgrouptowhich the

file’s inode has been allocated. For inode allocations, it selects the lock

group in which the file’s parent directory resides for nondirectory files.

Journaling

 The ext3 file system supports a popular feature called journaling, whereby

modifications to the file system are written sequentially to a journal.

 Asetofoperations thatperforms aspecifictask isatransaction.

 Once a transaction is written to the journal, it is considered to be committed.

Meanwhile, the journal entries relating to the transaction are replayed across the

actual file system structures.

 As the changes are made, a pointer is updated to indicate which actions have

completed and which are still incomplete. When an entirecommitted transaction is

completed, it is removed from the journal.

 Ifthesystemcrashes, sometransactions mayremaininthejournal.
 Thosetransactionswerenevercompletedtothefilesystemeventhoughtheywere

committed by the operating system, so they must be completed once the system

recovers.

 The transactions can be executed from the pointer until the work is complete, and

the file-system structures remain consistent.

TheLinuxProcessFile System

 TheLinuxprocessfilesystem,knownasthe/procfilesystem,isanexample of a

file system whose contents are not actually stored anywhere but are

computed on demand according to user file I/O requests.

 The/procfilesystem containsaillusionaryfilesystem.

 It does not exist on a disk. Instead, the kernel creates it in memory. It is

used to provide information about the system (originally about processes,

hence the name).

 Someof themoreimportantfilesanddirectoriesare explainedbelow.The

/procfilesystem isdescribed inmoredetailin theprocmanual page.

 The/procfilesystemmustimplementtwothings:adirectorystructure

andthefilecontentswithin.

 Toallowefficientaccesstothesevariablesfromwithinapplications,the

/proc/sys subtree is made available through a special system call, sysctl(),

that reads and writes the same variables in binary, rather than in text,

without the overhead of the file system. sysctl() is not an extra facility; it

simplyreadsthe/procdynamicentrytreetoidentifythevariablestowhich the

application is referring.

MOBILEOPERATINGSYSTEMS

 A mobile operating system (OS) is software that allows smartphones, tablet PCs andother

devices to run applications and programs.

 A mobile OS typically starts up when a device powers on, presenting a screen with icons

ortilesthatpresentinformationandprovideapplicationaccess.Mobileoperatingsystems also

manage cellular and wireless network connectivity, as well as phone access.

 Examples of mobile device operating systems include Apple iOS, Google Android,

Research in Motion’s BlackBerry OS, Nokia’s Symbian, Hewlett-Packard’s webOS

(formerly Palm OS) and Microsoft’s Windows Phone OS. Some, such as Microsoft’s

Windows 8, function as both a traditional desktop OS and a mobile operating system.

 Most mobile operating systems are tied to specific hardware, with little flexibility. Users

can jailbreak or root some devices, however, which allows them to install another mobile

OS or unlock restricted applications.

10. ANDRIODVSIOS

IOS

It is Apple’s mobile operating system used to run the popular iPhone, iPad, and iPod Touch

devices. Formerly known as the iPhone OS, the name was changed with the introduction of the

iPad. It interprets the commands of software applications (“apps”) and it gives those apps access

to features of the device, such as the multi-touch screen or the storage.

FeaturesofIOS

 System Fonts

 Folders

 Notificationcenter

 Accessibility

 Multitasking

 Switching Applications(application does not execute any code and may be removed

from memory at any time)

 TaskCompletion (helpstoaskextratimeforcompletion oftask)

 Backgroundaudio(helpstoruninbackground)

 Voiceover IP(in casephonecallisnot in progress)

 Backgroundlocation(notifiedwhenlocationchanges)

 Push notifications

ANDROID

AndroidisasoftwarepackageandLinuxbasedoperatingsystemformobiledevicessuchastablet

computersandsmartphones.ItisdevelopedbyGooglein2007andlatertheOHA(OpenHandset

Alliance).BecauseGoogledevelopedAndroid,itcomeswithalotofGoogleappservicesinstalled

rightoutofthebox.Gmail,GoogleCalendar,GoogleMaps,andGoogleNowareallpre-installed on most

Android phones

AndroidOShasmanyfeatures,amongwhicharethefollowing:

 Enhancedinterfacewiththearrayoficonsonthemenu.Androidadaptstohighquality 2D

and 3D graphics, with multi-touch support.

 Android supports multitasking, i.e. many applications will run at the same time, like

in a computer. This is not possible with simple mobile phones and many other

smartphones.

 Allnewmeansofconnectivityaresupport:GSM,3G,4G,Wi-Fi,Bluetooth,GPSetc.

 Androidsupportsmanylanguages,includingthosewithright-to-lefttext.

 Multimediamessagingsystem(MMS)issupported.

http://www.howitwork.in/difference-ios-android/
http://www.howitwork.in/difference-ios-android/
http://www.howitwork.in/difference-ios-android/
http://www.howitwork.in/difference-ios-android/
http://www.howitwork.in/difference-ios-android/

 Java runs great on Android. Applications for Android are developed in Java, but

instead of a Java Runtime Environment, Android uses the Dalvik Executer, which is

lighter on resources.

 Androidsupportsmost voiceandvideomediaformats,includingstreamingmedia.

 Additional hardware like sensors, gaming devices, other touchscreens can be

integrated in Android.

 Voice and Video over IP. VoIP has many benefits, and Android manages

camerasand has embedded support for seamless use of VoIP for free and cheap calls.

 On versions 2.2 and up, tethering is possible, which is the ability to use the Android

device as a mobile WiFi hot spot.

Comparison chart

Andriod iOS

Sourcemodel Open source Closed,withopensourcecomponents.

OSfamily Linux OSX,UNIX

Initial release September23,2008 July 29, 2007

Customizability Alot.Canchangealmostanything. Limitedunless jailbroken

Developer Google,OpenHandset Alliance AppleInc.

Widgets Yes No,except in NotificationCenter

Available

language(s)

100+Languages 34Languages

Filetransfer Easier than iOS. Using USB port and

Android File Transfer desktop app.

Photos can be transferred via USB

without apps.

More difficult. Media files can be

transferred using iTunes desktop app.

Photos can be transferred out via USB

without apps.

Availableon Many phones and tablets.Major

manufacturers are Samsung, Motorola,

LG, HTC and Sony.. Nexus and Pixel

line of devices is pure Android, others

bundle manufacturer software.

iPod Touch, iPhone,

 iPad,AppleTV (2nd and 3rd

generation)

Calls and

messaging

Google Hangouts. 3rd party apps like

Facebook Messenger, WhatsApp,

Google Duo and Skype all work on

iMessage,FaceTime(withotherApple

devices only). 3rd party apps like

Google Hangouts, Facebook

http://www.howitwork.in/difference-ios-android/
https://www.diffen.com/difference/Laptop_vs_Tablet_computer
https://www.diffen.com/difference/Apple_TV_vs_Roku
https://www.diffen.com/difference/Apple_TV_vs_Roku

 Androidand iOSboth. Messenger, WhatsApp, Google Duo

and Skype all work on Android and

iOS both.

Internet

browsing

Google Chrome (or Android Browser

on older versions; other browsers are

available)

MobileSafari(Otherbrowsersare

available)

App store ,

Affordability

and interface

Google Play – 1,000,000+ apps. Other

appstores likeAmazon andGetjaralso

distribute Android apps. (unconfirmed

".APKs")

Appleapp store– 1,000,000+ apps

Videochat GoogleDuoand other3rd party apps FaceTime (Apple devices only) and

other 3rd party apps

Voice

commands

GoogleNow, GoogleAssistant Siri

Working state Current Current

Maps GoogleMaps Apple Maps (Google Maps also

availableviaaseparate app download)

Latest stable

release and

Updates

Android8.0.0, Oreo(Aug21,2017) 11(Sep 19, 2017)

Alternativeapp

stores and side

loading

Several alternative app storesother

thantheofficialGooglePlayStore.(e.g.

Aptoide, Galaxy Apps)

Appleblocks3rdpartyappstores.The

phone needs to be jailbroken if you

want to download apps from other

stores.

Batterylifeand

management

Many Android phone manufacturers

equip their devices with large batteries

with a longer life.

Applebatteriesaregenerallynotasbig as

the largest Android batteries.

However, Apple is able to squeeze

decent battery life via

hardware/software optimizations.

Opensource Kernel,UI,andsomestandardapps The iOS kernel is not open source but

isbasedontheopen-sourceDarwinOS.

Filemanager Yes. (Stock Android File Manager

includedondevicesrunningAndroid

Notavailable

https://www.diffen.com/difference/Jailbreak_vs_Unlock

 7.1.1)

Photos

 &

Videos backup

Appsavailableforautomaticbackupof

photos and videos. Google Photos

allows unlimited backup of photos.

OneDrive, Amazon Photos and

Dropbox are other alternatives.

Up to 5 GB of photos and videos can

be automatically back up with iCloud.

All other vendors like Google,

Amazon, Dropbox, Flickr and

Microsoft have auto-backup apps for

both iOS and Android.

Security Android software patches are available

soonest to Nexus device users.

Manufacturers tend to lag behind in

pushing out these updates. So at any

given time a vast majority of Android

devices are not running updated fully

patched software.

Most people will never encounter a

problem with malware because they

don’t go outside the Play Store for

apps.Apple'ssoftwareupdatessupport

older iOS devices also.

Rooting,

bootloaders,

and

jailbreaking

Access and complete control over your

device is available and you can unlock

the bootloader.

Complete control over your device is

not available.

Cloud services Native integration with Google cloud

storage. 15GB free, $2/mo for 100GB,

1TB for $10. Apps available for

Amazon Photos, OneDrive

and Dropbox.

Native integration with iCloud. 5GB

free,50GBfor$1/mo,200GBfor

$3/mo, 1TB for $10/mo. Apps

availableforGoogleDrive andGoogle

Photos,AmazonPhotos,OneDriveand

Dropbox.

Interface TouchScreen TouchScreen

Supported

versions

Android5.0&later(Android4.4is also

supported but with patches)

iOS 8 &later

Firstversion Android1.0,Alpha iOS 1.0

11. IOS ANDANDROIDARCHITECTUREANDSDKFRAMEWORK

1. AndroidArchitecture

https://www.diffen.com/difference/Box_vs_Dropbox
https://www.diffen.com/difference/Box_vs_Dropbox

AndroidSystem Architecture

TheAndroidsoftwarestackgenerallyconsistsofaLinuxkernelandacollectionofC/C++

libraries that is exposed through an application framework that provides services, and

management of the applications and run time.

LinuxKernel

Android was created on the open source kernel of Linux. One main reason for choosing

this kernel was that it provided proven core features on which to develop the Android

operating system. The features of Linux kernel are:

1. Security:

TheLinuxkernel handlesthesecuritybetweentheapplicationandthesystem.

2. MemoryManagement:

It efficiently handles the memory management thereby providing the freedom to develop

our apps.

3. ProcessManagement:

Itmanagestheprocess well,allocatesresourcesto processeswhenevertheyneedthem.

4. NetworkStack:

Iteffectivelyhandlesthenetworkcommunication.

5. DriverModel:

It ensuresthat theapplication works.Hardwaremanufacturers canbuild theirdrivers into the

Linux build.

Libraries:

Running on the top of the kernel, the Android framework was developed with various

features. It consists of various C/C++ core libraries with numerous of open source tools.

Some of these are:

1. TheAndroidruntime:

The Android runtime consist of core libraries of Java and ART(the Android RunTime).

Older versions of Android (4.x and earlier) had Dalvik runtime.

2. OpenGL(graphicslibrary):

Thiscross-language,cross-platformapplicationprograminterface(API)isusedtoproduce 2D

and 3D computer graphics.

3. WebKit:

This open source web browser engine provides all the functionality to display web

content and to simplify page loading.

4. Mediaframeworks:

Theselibrariesallowyoutoplayandrecordaudioandvideo.

5. SecureSocketLayer(SSL):

TheselibrariesarethereforInternetsecurity.

AndroidRuntime:

It is the third section of the architecture. It provides one of the key components which is

called Dalvik Virtual Machine. It acts like Java Virtual Machine which is designed

specially forAndroid. Androiduses it’sowncustom VMdesignedto ensurethat multiple

instances run efficiently on a single device.

TheDelvikVMusesthedevice’sunderlyingLinuxkerneltohandlelow-level

functionality,including security,threading and memory management.

Application Framework

The Android team has built on a known set proven libraries, built in the background, and

all of it these is exposed through Android interfaces. These interfaces warp up all the

variouslibrariesandmakethemusefulfortheDeveloper.Theydon’thavetobuildanyof the

functionality provided by the android. Some of these interfaces include:

1. ActivityManager:

Itmanagestheactivitylifecycleandtheactivity stack.

2. Telephony Manager:

It provides access to telephony services as related subscriber information, such as phone

numbers.

3. View System:

Itbuildstheuserinterfacebyhandlingtheviewsandlayouts.

4. Location manager:

Itfindsthedevice’sgeographic location.

Applications:

Android applications can be found at the topmost layer. At application layer we write our

application to be installed on this layer only. Examples of applications are Games,

Messages, Contacts etc.

2. iOSArchitecture

CocoaTouch Layer

The Cocoa Touch layer sits at the top of the iOS stack and contains the frameworks

thataremostcommonlyusedbyiPhoneapplicationdevelopers.CocoaTouchisprimarilywritten

inObjective-C,isbasedonthestandardMacOSXCocoaAPI(asfoundonApple

desktop and laptop computers) and has been extended and modified to meet the needs of the

iPhone.

TheiOSMediaLayer

TheroleoftheMedialayeristoprovideiOSwithaudio,video,animationandgraphics

capabilities. As with the other layers comprising the iOS stack, the Media layer comprises a

number of frameworks that may be utilized when developing iPhone apps.

CoreOS Layer:

All theiOS technologies arebuild on thelow level features provided by theCore OS

layer. These technologies include Core Bluetooth Framework, External Accessory Framework,

Accelerate Framework, Security Services Framework, Local Authorisation Framework etc.

iOSCoreServices

TheiOSCoreServiceslayerprovidesmuchofthefoundationonwhichthepreviously

referenced layers are built

*******************EndofAndriod andiOSArchitecture Framework*************

12. THEiOS MEDIA LAYER

 The role of the Media layer is to provide iOS with audio, video, animation and graphics

capabilities.

 As with the other layers comprising the iOS stack, the Media layer comprises a numberof

frameworks that may be utilized when developing iPhone apps.

CoreVideoFramework(CoreVideo.framework)

A new framework introduced with iOS 4 to provide buffering support for the Core Media

framework.Thismaybeutilizedbyapplicationdevelopersitistypicallynotnecessarytousethis

framework.

CoreTextFramework(CoreText.framework)

 TheiOSCoreTextframeworkisaC-basedAPIdesignedtoeasethehandlingofadvanced text

layout and font rendering requirements.

ImageI/OFramework (ImageIO.framework)

 TheImageIOframework,thepurposeofwhichistofacilitatetheimportingandexporting of

image data and image metadata, was introduced in iOS 4.

 The framework supports a wide range of image formats including PNG, JPEG, TIFF and

GIF.

AssetsLibraryFramework(AssetsLibrary.framework)

 TheAssetsLibraryprovidesamechanismforlocatingandretrievingvideoandphotofiles

located on the iPhone device.

 Inadditiontoaccessingexistingimagesandvideos,thisframeworkalsoallowsnewphotos and

videos to be saved to the standard device photo album.

CoreGraphicsFramework (CoreGraphics.framework)

 The iOS Core Graphics Framework (otherwise known as the Quartz 2D API) provides a

lightweight two dimensional rendering engine.

 FeaturesofthisframeworkincludePDFdocumentcreationandpresentation,vectorbased

drawing,transparentlayers,pathbaseddrawing,anti-aliasedrendering,colormanipulation and

management, image rendering and gradients.

 Thosefamiliar with the Quartz2D APIrunningon MacOS X will bepleased to learn that

the implementation of this API is the same on iOS.

QuartzCoreFramework(QuartzCore.framework)

 The purpose of the Quartz Core framework is to provide animation capabilit ies on the

iPhone.

 It provides the foundation for the majority of the visual effects and animation used by the

UIKit framework and provides an Objective-C based programming interface for creation

of specialized animation within iPhone apps.

OpenGLESframework (OpenGLES.framework)

 For many years the industry standard for high performance 2D and 3D graphics drawing

has been OpenGL.

 Originally developed by the now defunct Silicon Graphics, Inc (SGI) during the 1990s in

the form of GL, the open version of this technology (OpenGL) is now under the care of a

non-profit consortium comprising a number of major companies including Apple, Inc.,

Intel, Motorola and ARM Holdings.

 OpenGL for Embedded Systems (ES) is a lightweight version of the full OpenGL

specification designed specifically for smaller devices such as the iPhone,iOS 3 or later

supports both OpenGL ES 1.1 and 2.0 on certain iPhone models (such as the iPhone 3GS

and iPhone 4). Earlier versions of iOS and older device models support only OpenGL ES

version 1.1.

iOSAudio Support

 iOS is capable of supporting audio in AAC, Apple Lossless (ALAC), A-law,

IMA/ADPCM, Linear PCM, µ-law, DVI/Intel IMA ADPCM, Microsoft GSM 6.10 and

AES3-2003 formats through the support provided by the following frameworks.

AVFoundationframework (AVFoundation.framework)

 An Objective-C based framework designed to allow the playback, recording and

management of audio content.

Core Audio Frameworks (CoreAudio.framework, AudioToolbox.framework and

AudioUnit.framework)

 TheframeworksthatcompriseCoreAudioforiOSdefinesupportedaudiotypes,playback and

recording of audio files and streams and also provide access to the device’s built-in audio

processing units.

OpenAudioLibrary(OpenAL)

 OpenALisacrossplatformtechnologyusedtoprovidehigh-quality,3Daudioeffects(also

referred to as positional audio).

 Positionalaudiocanbeusedinavarietyofapplicationsthoughistypicallyusingtoprovide sound

effects in games.

MediaPlayerframework (MediaPlayer.framework)

 The iOS Media Player framework is able to play video in .mov, .mp4, .m4v, and .3gp

formats at a variety of compression standards, resolutions and frame rates.

CoreMidiFramework(CoreMIDI.framework)

 IntroducediniOS4,theCoreMIDIframeworkprovidesanAPIforapplicationstointeract with

MIDI compliant devices such as synthesizers and keyboards viathe iPhone’s dock

connector.

****************************EndofiOSMediaLayer****************************

13. THEiOSCORESERVICESLAYER

 The iOS Core Services layer provides much of the foundation on which the previously

referenced layers are built and consists of the following frameworks.

AddressBookframework (AddressBook.framework)

 TheAddressBookframeworkprovidesprogrammaticaccesstotheiPhoneAddressBook

contact database allowing applications to retrieve and modify contact entries.

CFNetworkFramework(CFNetwork.framework)

 The CFNetwork framework provides a C-based interface to the TCP/IP networking

protocol stack and low level access to BSD sockets.

 ThisenablesapplicationcodetobewrittenthatworkswithHTTP,FTPandDomainName servers

and to establish secure and encrypted connections using Secure Sockets Layer (SSL) or

Transport Layer Security (TLS).

CoreDataFramework (CoreData.framework)

 This framework is provided to ease the creation of data modeling and storage in Model-

View-Controller (MVC) based applications.

 Use of the Core Data framework significantly reduces the amount of code that needs

tobewrittentoperformcommontaskswhenworkingwithstructureddatainanapplication.

CoreFoundationFramework(CoreFoundation.framework)

 The Core Foundation is a C-based Framework that provides basic functionality such as

data types, string manipulation, raw block data management, URL manipulation, threads

and run loops, date and times, basic XML manipulation and port and socket

communication.AdditionalXML capabilitiesbeyondthoseincluded withthisframework are

provided via the libXML2 library.

 Though this is a C-based interface, most of the capabilities of the Core Foundation

framework are also available with Objective-C wrappers via the Foundation Framework.

CoreMediaFramework(CoreMedia.framework)

 TheCoreMedia frameworkisthe lower level foundationuponwhich the AV Foundation

layer is built.

 While most audio and video tasks can, and indeed should, be performed using the higher

level AV Foundation framework, access is also provided for situations where lower level

control is required by the iOS application developer.

CoreTelephonyFramework(CoreTelephony.framework)

 The iOS Core Telephony framework is provided to allow applications to interrogate the

device for information about the current cell phone service provider and to receive

notification of telephony related events.

EventKitFramework(EventKit.framework)

 An API designed to provide applications with access to the calendar and alarms on the

device.

FoundationFramework(Foundation.framework)

 TheFoundationframeworkisthestandardObjective-Cframeworkthatwillbefamiliarto those

that have programmed in Objective-C on other platforms (most likely Mac OS X).

 Essentially, this consists of Objective-C wrappers around much of the C-based Core

Foundation Framework.

CoreLocationFramework (CoreLocation.framework)

 The Core Location framework allows you to obtain the current geographical location of

thedevice(latitudeandlongitude)andcompassreadingsfromwithyourownapplications.

 The method used by the device to provide coordinates will depend on the data

availableatthetimetheinformationisrequestedandthehardwaresupportprovidedbytheparticul

ar iPhone model on which the app is running (GPS and compass are only featuredon

recent models).

 This will eitherbebased on GPS readings, Wi-Fi networkdataor cell towertriangulation (or

some combination of the three).

MobileCoreServicesFramework (MobileCoreServices.framework)

 The iOS Mobile Core Services framework provides the foundation for Apple’s Uniform

Type Identifiers (UTI) mechanism, a system for specifying and identifying data types.

 A vast range of predefined identifiers have been defined by Apple including such diverse

data types as text, RTF, HTML, JavaScript, PowerPoint .ppt files, PhotoShop images and

MP3 files.

StoreKitFramework(StoreKit.framework)

 The purpose of the Store Kit framework is to facilitate commerce transactions between

your application and the

 AppleAppStore.Priortoversion3.0ofiOS,itwasonlypossibletochargeacustomerfor an app at

the point that they purchased it from the App Store. iOS 3.0 introduced the

conceptofthe“inapppurchase”wherebytheusercanbegiventheoptionmakeadditional

payments from within the application.

 This might, for example, involve implementing a subscription model for an application,

purchasing additional functionality oreven buying afastercarforyou to drivein aracing

game.

SQLitelibrary

 Allows for a lightweight, SQL based database to be created and manipulated from within

your iPhone application.

SystemConfigurationFramework(SystemConfiguration.framework)

 The System Configuration framework allows applications to access the network

configuration settings of the device to establish information about the “reachability” of

thedevice(forexample whetherWi-Fiorcellconnectivityisactiveandwhetherandhow traffic

can be routed to a server).

QuickLookFramework(QuickLook.framework)

 One of the many new additions included in iOS 4, the Quick Look framework provides a

usefulmechanismfordisplayingpreviewsofthecontentsoffilestypesloadedontothe

device (typically viaaninternetor networkconnection)for whichtheapplicationdoes not

already provide support.

 FileformattypessupportedbythisframeworkincludeiWork,MicrosoftOfficedocument,

RichTextFormat,AdobePDF, Imagefiles,public.textfilesandcommaseparated(CSV).

******************************EndofCoreServicesLayer*********************

14. TheiOSCoreOSLayer

 TheCoreOSLayeroccupiesthebottompositionoftheiOSstackand,assuch,sitsdirectly on top

of the device hardware.

 Thelayerprovidesavarietyofservicesincludinglowlevelnetworking,accesstoexternal

accessories and the usual fundamental operating system services suchas memory

management, file system handling and threads.

AccelerateFramework (Accelerate.framework)

 IntroducedwithiOS4,theAccelerateFrameworkprovidesahardwareoptimizedC-based API

for performing complex and large number math, vector, digital signal processing (DSP)

and image processing tasks and calculations.

ExternalAccessoryframework(ExternalAccessory.framework)

 Provides the ability to interrogate and communicate with external accessories connected

physically to the iPhone via the 30-pin dock connector or wirelessly via Bluetooth.

SecurityFramework(Security.framework)

 TheiOS Security framework provides all the security interfaces you would expect to find

onadevicethatcanconnecttoexternalnetworksincludingcertificates,publicandprivate keys,

trust policies, keychains, encryption, digests and Hash-based Message Authentication

Code (HMAC).

System(LibSystem)

 Aswehavepreviouslymentioned,theiOSisbuiltuponaUNIX-like foundation.

 TheSystemcomponentoftheCoreOSLayerprovidesmuchthesamefunctionalityasany

otherUNIXlikeoperatingsystem.Thislayerincludestheoperatingsystemkernel (based on the

Mach kernel developed by Carnegie Mellon University) and device drivers.

 The kernel is the foundation on which the entire iOS is built and provides the low level

interface to the underlying hardware.

 Amongst other things the kernel is responsible for memory allocation, process lifecycle

management, input/output, inter-process communication, thread management, low level

networking, file system access and thread management.

 As an app developer your access to the System interfaces is restricted for security and

stability reasons. Those interfaces that are available to you are contained in a C-based

library called LibSystem.

*********************EndodCoreOSLayer***************************

15. FILESYSTEMBASICS

 Afilesystemhandlesthepersistentstorageofdatafiles,apps,andthefilesassociated with the

operating system itself. Therefore, the file system is one of the fundamental

resources used by all processes.

 APFS is the default file system in macOS, iOS, watchOS, and tvOS. APFS replaces

HFS+asthedefaultfilesystemforiOS10.3andlater,andmacOSHighSierraandlater macOS

additionally supports a variety of other formats, as described in Supported FileSystems.

 Thefilesystemusesdirectoriestocreateahierarchical organization

 Before you begin writing code that interacts with the file system, you should first

understandalittleabouttheorganizationoffilesystemandtherulesthatapplytoyour code.

 Asidefromthebasictenetthatyoucannotwritefilestodirectoriesforwhichyoudonot have

appropriate security privileges, apps are also expected to be good citizens and put files

in appropriate places.

 Precisely where you put files depends on the platform, but the overarching goal is to

makesurethattheuser’sfilesremaineasilydiscoverableandthatthefilesyourcodeuses

internally are kept out of the user’s way.

AbouttheiOS FileSystem

 TheiOSfilesystemisgearedtowardapps running ontheirown.Tokeepthesystem

simple,usersofiOSdevicesdonothavedirectaccesstothefilesystemandappsare expected

to follow this convention.

iOSStandardDirectories:WhereFilesReside?

 Forsecuritypurposes,aniOSapp’sinteractionswiththefilesystemarelimitedtothe directories

inside the app’s sandbox directory.

 During installation of a new app, the installer creates a number of container directoriesfor

the app inside the sandbox directory.

 Eachcontainerdirectoryhasaspecific role.

 The bundle container directory holds the app’s bundle, whereas the data container

directory holds data for both the app and the user.

 Thedatacontainerdirectoryisfurtherdividedintoanumberofsubdirectoriesthatthe app can

use to sort and organize its data.

https://developer.apple.com/library/archive/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemDetails/FileSystemDetails.html%23/apple_ref/doc/uid/TP40010672-CH8-97329
https://developer.apple.com/library/archive/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemDetails/FileSystemDetails.html%23/apple_ref/doc/uid/TP40010672-CH8-97329

 Theappmayalsorequestaccesstoadditionalcontainerdirectories—forexample,the iCloud

container—at runtime.

 Thesecontainerdirectoriesconstitutetheapp’sprimaryviewofthefilesystem. The

Figureshows a representation of the sandbox directory for an app.

 AniOSappoperating within itsownsandbox directory

 Anappisgenerallyprohibitedfromaccessingorcreatingfilesoutsideitscontainer

directories.

 Oneexceptiontothisruleiswhenanappusespublicsysteminterfacestoaccessthings such as

the user’s contacts or music.

 Inthosecases,thesystemframeworksusehelperappstohandleanyfile-related

operations needed to read from or modify the appropriate data stores.

 Tablelistssomeofthemoreimportantsubdirectoriesinsidethesandboxdirectoryand

describes their intended usage.

 Thistablealsodescribesanyadditionalaccessrestrictionsforeachsubdirectoryand points

out whether the directory’s contents are backed up by iTunes and iCloud.

Table CommonlyuseddirectoriesofaniOSapp

Directory Description

AppName.app

Thisistheapp’sbundle.Thisdirectorycontainstheappandallofits resources.

You cannot write to this directory. To prevent tampering, the bundle

directory is signed at installation time. Writing to this directory changes

the signature and prevents your app from launching. You can, however,

gainread-onlyaccesstoanyresourcesstoredintheappsbundle.Formore

information, see the Resource Programming Guide

The contents of this directory are not backed up by iTunes or iCloud.

However,iTunesdoesperformaninitialsyncofanyappspurchasedfrom the

App Store.

Documents/

Use this directory to store user-generated content. The contents of this

directorycanbemadeavailabletotheuserthroughfilesharing;therefore, his

directory should only contain files that you may wish to expose to the

user.

Thecontents ofthis directory arebacked up byiTunes and iCloud.

Documents/Inbox

Use this directory to access files that your app was asked to open by

outsideentities.Specifically,theMailprogramplacesemailattachments

associated with your app in this directory. Document interaction

controllers may also place files in it.

Your app can read and delete files in this directory but cannot create new

filesorwritetoexistingfiles.Iftheusertriestoeditafileinthisdirectory, your app

must silently move it out of the directory before making any changes.

Thecontents ofthis directoryarebacked up byiTunes and iCloud.

Library/

Thisisthetop-leveldirectoryforanyfilesthatarenotuserdatafiles.You typically

put files in one of several standard subdirectories. iOS apps commonly use

the Application Support and Caches subdirectories; however, you can

create custom subdirectories.

UsetheLibrarysubdirectoriesforanyfilesyoudon’twantexposedto the user.

Your app should not use these directories for user data files.

The contents of the Library directory (with the exception of

theCachessubdirectory)arebackedupbyiTunesandiCloud.

For additional information about the Library directory and its commonly

usedsubdirectories,seeTheLibraryDirectoryStoresApp-SpecificFiles.

tmp/

Use this directory to write temporary files that do not need to persist

between launches of your app. Your app should remove files from this

directorywhentheyarenolongerneeded;however,thesystemmaypurge this

directory when your app is not running.

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/LoadingResources/Introduction/Introduction.html%23/apple_ref/doc/uid/10000051i
https://developer.apple.com/library/archive/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html%23/apple_ref/doc/uid/TP40010672-CH2-SW1

Thecontentsofthisdirectoryarenotbacked upbyiTunesor iCloud.

AniOSappmaycreateadditionaldirectoriesintheDocuments,Library,andtmpdirectories. You

might do this to better organize the files in those locations.

WhereYouShould PutYourApp’sFiles

 TopreventthesyncingandbackupprocessesoniOSdevicesfromtakingalongtime,be selective

about where you place files. Apps that store large files can slow down the process of

backing up to iTunes or iCloud.

 These apps can also consume a large amount of a user's available storage, which may

encouragetheusertodeletetheappordisablebackupofthatapp'sdatatoiCloud.With this in

mind, you should store app data according to the following guidelines:

 Put user data in Documents/. User data generally includes any files you might want to

expose to the user—anything you might want the user to create, import, delete or edit.

For a drawing app, user data includes any graphic files the user might create. For a text

editor,itincludesthetextfiles.Videoandaudioappsmayevenincludefilesthattheuser has

downloaded to watch or listen to later.

 Putapp-createdsupportfilesin theLibrary/Applicationsupport/directory. In

general,thisdirectoryincludesfilesthattheappusestorunbutthatshouldremainhidden

fromtheuser.Thisdirectorycanalsoincludedata files,configurationfiles, templatesand

modified versions of resources loaded from the app bundle.

 RememberthatfilesinDocuments/andApplicationSupport/arebackedupby

default. You can exclude files from the backup by calling using

theNSURLIsExcludedFromBackupKeykey.Anyfilethatcanbere-createdor

downloadedmustbeexcludedfromthebackup.Thisisparticularlyimportantforlarge media

files. If your application downloads video or audio files, makesure they arenot included

in the backup.

 Puttemporarydatain thetmp/directory.Temporarydatacomprisesany datathatyou do not

need to persist for an extended period of time. Remember to delete those files

whenyouaredonewiththemsothattheydonotcontinuetoconsumespaceontheuser’s device.

The system will periodically purge these files when your app is not running; therefore,

you cannot rely on these files persisting after your app terminates.

 Put data cache files in the Library/Caches/ directory. Cache data can be used for any

data that needs to persist longer than temporary data, but not as long as a support file.

Generally speaking, the application does not requirecache data to operate properly, but it

can use cache data to improve performance.

 Examples of cache data include(but arenot limitedto)database cache files and transient,

downloadable content. Note that the system may delete the Caches/ directory to free up

disk space, so your app must be able to re-create or download these files as needed.

PARTA

1. Whatarethecomponents ofaLinux System?

Linuxsystemcomposedofthreemainmodules.They are:

i) Kernel

ii) System libraries

iii) System utilities

2. Whatarethemain supports fortheLinux modules?

TheModulesupport under Linux has three components. They are:

i) Modulemanagement

ii) Driverregistration

iii) Conflictresolution mechanism.

3. Defineshell.

A shell is a program that provides the traditional, text-only user interface for Linux and

otherUnix-likeoperatingsystems.Itsprimaryfunctionistoreadcommandsthataretyped into

the console.

4. Whatismeantbykernel inLinux system?

Kernelisresponsibleformaintainingalltheimportantabstractionsoftheoperating

system including such things as virtual memory and processes.

5. Whatis meantbysystemLibraries?

Systemlibrariesdefineastandardsetoffunctionsthroughwhichapplicationscaninteract

withthekernelandthatimplementmuchoftheoperating-systemfunctionalitythatdoesn’t need

the full privileges of kernel code.

6. WhatismeantbysystemUtilities?

System Utilities are system programs that perform individual, specialized management

tasks. Some of the system utilities may be invoked just to initialize and configure some

aspect of the system and others may run permanently, handling such tasks as responding

toincomingnetworkconnections,acceptinglogonrequestsfromterminalsorupdatinglog files.

7. Whatdoyoumeantbyprocess?

Processisthebasiccontextwithininwhichalluser-requestedactivityisservicedwithin the OS.

8. Whatismeantby Process-ID

A PID is an acronym for process identification number on a Linux or Unix-like operating

system. A PID is automatically assigned to each process when it is created. A process is

nothing but running instance of a program and each process has a unique PID on a Unix-

like system.

9. Whatismeantby personality?

Processpersonalityareprimarilyusedbyemulationlibrariestorequestthatsystemcall be

compatible with certain version of UNIX

10. Whatismeantbybuffercache?

Itisthekernel’smaincacheforblocked-orienteddevicessuchasdiskdriversandisthe main

mechanism through which I/O to these devices is performed.

11. Whatisthedisadvantageofstaticlinking?

Themaindisadvantageofstaticlinkingisthateveryprogramgeneratedmustcontain copies

of exactly the same common system library functions.

12. Whatis thefunction ofmodule management?

Themodulemanagement allowsmodulestobeloadedintomemoryandtotalktotherest of the

kernel.

13. Whatis thefunctionofdriverregistration?

Driverregistrationallowsmodulestotelltherestofthekernelthatanewdriverhas become

available.

14. Whatisthefunction ofconflictresolutionmechanism?

Thismechanismallowsdifferentdevicedriverstoreservehardwareresourcesandto

protect those resources from accidental use by another driver.

15. Whatis meantbydevicedrivers?

Devicedriversincludei) characterdevicessuchasprinters,terminalsii)Blockdevices

(including all disk drives) and network interface devices.

16. Whatisacharacterdevice?

A device driver which does not offer random access to fixed blocks of data. A character

device driver must register a set of functions which implement the driver’s various file

I/O operations.

17. Whatis MobileOS?

A mobile operating system (mobile OS) is an OS built exclusively for a mobile device,

such as a smartphone, personal digital assistant (PDA), tablet or other embedded mobile

OS.

18. Whatis iOS?

iOS is a mobile operating system created and developed by Apple Inc. exclusively for its

hardware. It is the operating system that presently powers many of the company's mobile

devices,includingtheiPhone,iPad,andiPodTouch.Itisthesecondmost popularmobile

operating system globally after Android.

19. Listtheservicesavailablein iOS.

i) CocoaTouch

ii) Medialayer

iii) Servicelayer

iv) CoreOS layer

20. ListthefeaturesofiOS.

i) System fonts

ii) Folders

iii) Notificationcenter

iv) Accessibility

v) Multitasking

vi) Switching Applications

vii) Taskcompletion

viii) Backgroundaudio

ix) VoiceoverIP

x) BackgroundLocation

xi) Push notification

21. Listtheadvantages of iOS

Bestgamingexperience.

 Avast numberofapplications.

 Suitsforbusiness and gaming.

 ExcellentUIandfluidresponsive.

 Thelatest versionhastwonotification menus.

 Excellentsecurity.

 Multitasking.

 Jailbreakingforcustomization.

 Wearablesaregettinglaunched.

 Feelis awesome.

 Excellentformedia entertainment.

 Multi-languagesupport.

 ApplePay Support.

 Quicksettings inthenotificationbar.

22. ListthedisadvantagesofiOS

 Ithas areviewprocess,whendeveloperswantto publishanapptheyneedtosend

ittoAppleforreviewthattakesaround7daysandittakesevenmoreinsomecases.

 Applicationsareverylargewhencomparedtoothermobileplatforms

 UsingiOS arecostly Apps andno widget support

 Batteryperformanceisverypooron 3G

 Repaircosts areverypiracy

 Notflexibleonly supportsiOS devices

23. Listtheadvantages of Android

AndroidIsMoreCustomizableCanchangealmost anything.

 InAndroid,anynewpublicationcanbedoneeasilyandwithoutany

review process

 UseaDifferent Messaging Appfor SMS

 AndroidOffersanOpenPlatform

 EasyaccesstotheAndroidAppMarket

Cost Effective

 Upcomingversionshaveasupport tosaveRAWimages

 BuiltinBetaTestingandstagedrollout

24. Listthedisadvantagesof Android

 Needinternetconnection

 Advertising

 Wastefulmemory

 Manyapplicationcontainviruses

25. HowareiOS andAndroidsimilar? Howaretheydifferent?

Similarities:Botharebasedonexistingkernel.Bothhavearchitecturethatusessoftware stacks.

Both provide framework for developers

Difference: iOS is closed-source and Android is open source. iOS applications are

developed in objective C, Android in java. Android uses a virtual machine, and iOS

executes code natively.

http://www.credosystemz.com/training-in-chennai/best-android-training-in-chennai/

73

26. DescribesomechallengesofdesigningOSformobiledevicecomparedwith

designing OS for traditional PC’s

 LessstoragecapacitymeanstheOSmustbemanagememory

 Lessprocessingpowerplusfewerprocessorsmeantheoperatingsystemcarefully

apportion

 Processorstoapplications

Part-B

1. DrawaneatsketchofoverviewofiOSarchitectureandexplainindetail.(13)

2. DiscussprocessmanagementandschedulinginLINUX. (13)

3. IllustratesomeexistingSDKarchitectureimplementationframeworks.(13)
4. DescribeaboutthenetworkstructureofLINUXsystem.(13)

5. Explainindetailthedesignprinciples,kernelmodulesinLINUXsystem.(7+6)

6. Demonstratethefunctionsofthekernel,serviceandcommandlayersofOS.(13)
7. GeneralizetheimportanceofmemorymanagementinOperatingsystem.(13)

8. Explainindetailaboutfilesystemmanagementdonein LINUX.(13)
9. SummarizeInterProcessCommunicationwithsuitableexample.(13)

10. Analyze:
a. mobileOS(5)ii)desktopOS(4)iii)multi-userOS(4)

11. CompareandcontrastAndriodOSandIOS.(13)
12. ExplainindetailaboutLinuxarchitecture. (13)

13. Comparethefunctionsofmedialayer,servicelayerandcoreOSlayer.
14. ExplainthebasicconceptsoftheLinux system

15. 2.Explainaboutkernelmodules

16. 3.ExplainindetailabouttheprocessmanagementinLinux
17. 4.ExplainindetailabouttheschedulinginLinux

18. 5.ExplaintheiOSarchitectureandvariouslayersavailableiniOS

19. Discussaboutvariousservicesinthemedialayer
20. DiscussaboutvariousservicesintheiOScoreOSlayer

DiscussaboutvariousservicesintheiO

21.SserviceOSlayer

	CS6401-OPERATINGSYSTEMS
	ProcessConcept
	Differencebetweenprogramand process
	ProcessControlBlock(PCB)
	ProcessStates:
	SchedulingQueues
	Schedulers
	Long-TermScheduler
	Short-TermScheduler
	MediumTermScheduler
	ContextSwitching
	1. ProcessCreation
	AtreeofprocessesonatypicalLinuxsystem.
	2. ProcessTermination
	orcooperating processes.
	Shared-MemorySystems
	Messagepassing
	1. BasicStructure:
	1. DirectCommunication
	2. IndirectCommunication
	3. Buffering
	4. Synchronization
	Thread
	Motivation
	Benefits
	MultithreadingModels
	1. Many-to-One:
	2. One-to-One:
	3. Many-to-ManyModel:
	1. fork()and exec()systemcalls.
	2. Threadcancellation.
	3. Signalhandling
	4. Threadpools
	5. Threadspecificdata
	TypesofParallelism
	RequirementstobesatisfiedforaSolutiontotheCritical-Section Problem:
	GeneralstructureofprocessPi
	signal().
	SemaphoreUsage
	SemaphoreImplementation
	Deadlocksand Starvation
	PriorityInversion
	TheBounded-BufferProblem
	Thestructureoftheproducerprocess.
	Thestructureoftheconsumerprocess.
	ReaderWriterProblem
	Definition
	DiningPhilosophersProblem
	Solution:
	MonitorUsage
	Schematicviewof aMonitor
	Amonitorsolutiontothedining-philosopherproblem.
	BasicConcepts
	CpuScheduler
	Dispatcher
	Schedulingcriteria
	BestAlgorithmconsider following:
	SchedulingAlgorithms
	First-Come,First-Served(FCFS)Schedulingalgorithm.
	ExampleProblem
	Shortest-Job-First(SJF)Scheduling
	PriorityScheduling
	Roundrobinscheduling
	MultilevelQueueScheduling
	MultilevelFeedbackQueueScheduling
	MultipleProcessorScheduling
	Real-TimeScheduling
	Hardreal-timesystems
	Softreal-timesystems
	Definition:
	SystemModel
	DeadlockCharacterizations:-
	NecessaryConditionsforDeadlock:-
	Resource-AllocationGraph
	Resource-allocationgraphwithadeadlock.
	MethodsforHandlingDeadlocks
	1. MutualExclusion
	2. Holdand Wait
	3. DenyingNopreemption
	4. DenyingCircularwait
	SafeState
	Banker’sAlgorithm
	Need[i,j]= Max[i,j]–Allocation [i,j].
	Resource-RequestAlgorithm
	DeadlockDetection
	ResourceAllocationGraph WaitforGraph
	CharacteristicsofWindowsprocesses:
	AWindowsProcess andItsResources
	ProcessandThreadObjects

	FCFSSCHEDULING
	PRIORITY
	UNITIIISTORAGE MANAGEMENT
	1. MEMORYMANAGEMENT:BACKGROUND
	BasicHardware
	AddressBindingDefinition
	Threedifferentstagesof binding:
	Logicalvs.PhysicalAddress Space
	Memory-ManagementUnit(MMU)
	TheBaseregisteriscalled arelocation register.
	DynamicLinkingandsharedlibraries
	Basic
	SwappingonMobile Systems
	MemoryProtection
	MemoryAllocation
	Thereare twomethodsnamely:
	 Fixed–Partition Method:
	 Variable-partitionmethod:
	Solution:
	Example:
	Fragmentation:
	BasicMethod
	SegmentationHardware
	Forexample,
	BasicMethod (1)
	AddressTranslationScheme

	 TheTLBisassociative,high-speedmemory.
	tablemustbemade.
	Protection
	SharedPages
	1. HierarchicalPaging
	2. HashedPageTables
	Algorithm:
	3. InvertedPageTable
	IA-32Segmentation
	IA-32Segmentation (1)
	IA-32Paging
	x86-64
	8. IRTUAL MEMORY
	o Advantages:

	9. DEMANDPAGING
	Concept
	Advantages
	Pagetablewhen somepagesarenot in mainmemory.
	PerformanceofDemandPaging
	Example
	Pagefault
	Needforpage replacement
	Pagereplacementalgorithms
	Example:
	No.ofpagefaults = 15
	Example: (1)
	(c) LRU(LeastRecentlyUsed)pagereplacementalgorithm
	Example: (2)
	ImplementationofLRU
	2. Stack
	UseofAStack toRecordTheMostRecentPageReferences
	(i) AdditionalReferenceBits Algorithm
	Example: (3)
	(iv) Counting-BasedPageReplacement

	11. ALLOCATIONOF FRAMES
	Allocation ofFrames
	Equal allocation
	Globalvs.Local Replacement
	Thrashing
	1. Working-SetStrategy
	2. Page-FaultFrequencyScheme
	AllocatingKernelMemory
	BuddySystem
	SlabAllocation

	UNITIVFILESYSTEMSANDI/OSYSTEMS
	MASSSTORAGESTRUCTURE
	1. OverviewofMassStorageStructure Magnetic Disks
	Solid-StateDisks
	2. Disk Structure
	3. Disk Scheduling
	2. SSTF(ShortestSeekTimeFirst)

	3. SCAN
	4. DiskManagement
	DiskFormatting
	Itdoessointwosteps.
	BootBlock
	BadBlocks
	Method1:“Handledmanually‖
	Method2:“sectorsparingorforwarding”
	Atypicalbad-sector transactionmightbeasfollows:

	Method3:“sectorslipping”
	5. Swap-SpaceManagement
	1. Swap-space use
	2. Swap-SpaceLocation
	Solaris 1
	Solaris 2

	1. FileConcepts
	2. FileAttributes
	3. FileOperations

	5. AccessMethods
	1. SequentialAccess
	2. DirectAccess
	3. IndexedAccess
	6. DirectoryStructure
	LogicalStructure(or) LevelofDirectory
	Single–Level Directory
	Disadvantages
	TwoLevelDirectory
	Characteristicsoftwoleveldirectorysystem
	TreeStructuredDirectory
	Acyclic-GraphStructuredDirectories
	GeneralGraph Directory
	7. FileSystem Mounting
	1. MultipleUsers
	2. RemoteFileSystems
	3. ConsistencySemantics
	TypesofAccess
	AccessControl

	FILESYSTEMIMPLEMENTATION
	1. FileSystem Structure
	Logical filesystem
	Thefileorganization module
	Basicfilesystem
	IO control

	2. DirectoryImplementation
	LinearList
	HashTable
	3. AllocationMethods
	Contiguous Allocation
	Advantages
	Disadvantages
	LinkedList Allocation
	FileAllocation Table
	Advantages (1)
	Disadvantages (1)
	IndexedAllocation
	Advantages
	Disadvantages
	4. FreeSpaceManagement
	1. BitVector
	2. Linked List
	3. Grouping
	4. Counting
	5. EfficiencyandPerformance
	Performance
	6. Recovery
	Log-StructuredFileSystems
	I/O SYSTEMS
	PCbus structure

	DirectI/Oinstructions
	Memory-mappedI/O
	1. Polling
	Coordinationbetweenthehost&thecontrolleris donebyhandshakingasfollows:
	2. Interrupts
	3. DirectMemoryAccess (DMA)

	2. ApplicationI/OInterface
	1. BlockandCharacterDevices
	2. NetworkDevices
	3. Clocks and Timers

	UsesofProgrammableinterval timer:
	3. KernelI/O Subsystem
	1. I/O Scheduling:
	2. Buffering:
	Reasonsforbuffering:
	WhenthekernelreceivesafileI/Orequest,
	TheOSprovidesacontrolinterfacethatenablesusersandsystemadministrators;
	Devicereservation-providesexclusiveaccess toa device
	5. Error Handling

	STREAMS
	PERFORMANCE
	I/Oamajorfactorin systemperformance:
	Wecanemployseveral principlestoimprovetheefficiencyofI/O:
	Itcan beinefficient;

	UNITV CASE STUDY
	1. LINUXSYSTEM
	LinuxHistory
	TheLinux Kernel

	2. DESIGN PRINCIPLES
	ComponentsofaLinux System

	3. KERNELMODULES
	Module Management
	DriverRegistration
	Conflict Resolution
	4. PROCESSMANAGEMENT
	Thefork()andexec()ProcessModel
	ProcessEnvironment
	twonull-terminatedvectors:theargumentvectorandtheenvironmentvector.

	ProcessContext
	2. ProcessesandThreads
	ProcessScheduling
	CompletelyFairScheduler(CFS).

	Real-TimeScheduling
	KernelSynchronization
	Symmetric Multiprocessing
	ManagementofPhysicalMemory
	VirtualMemory
	1. VirtualMemoryRegions
	2. Lifetimeofa Virtual Address Space
	3. Swappingand Paging
	4. KernelVirtualMemory
	ExecutionandLoadingofUserPrograms
	7. INPUTANDOUTPUTMANAGEMENT
	Block Devices
	CharacterDevices
	Networkdevices

	8. INTERPROCESSCOMMUNICATION
	SynchronizationandSignals
	PassingofDataamong Processes

	9. FILESYSTEMS
	TheVirtual File System
	TheLinux ext3FileSystem
	Journaling
	TheLinuxProcessFile System
	MOBILEOPERATINGSYSTEMS

	10. ANDRIODVSIOS
	IOS
	FeaturesofIOS

	ANDROID
	11. IOS ANDANDROIDARCHITECTUREANDSDKFRAMEWORK
	1. AndroidArchitecture
	LinuxKernel
	1. Security:
	2. MemoryManagement:
	3. ProcessManagement:
	4. NetworkStack:
	5. DriverModel:
	Libraries:
	1. TheAndroidruntime:
	2. OpenGL(graphicslibrary):
	3. WebKit:
	4. Mediaframeworks:
	5. SecureSocketLayer(SSL):
	AndroidRuntime:
	Application Framework
	1. ActivityManager:
	2. Telephony Manager:
	3. View System:
	4. Location manager:
	Applications:
	2. iOSArchitecture
	TheiOSMediaLayer
	CoreOS Layer:
	iOSCoreServices
	12. THEiOS MEDIA LAYER
	CoreVideoFramework(CoreVideo.framework)
	CoreTextFramework(CoreText.framework)
	ImageI/OFramework (ImageIO.framework)
	AssetsLibraryFramework(AssetsLibrary.framework)
	CoreGraphicsFramework (CoreGraphics.framework)
	QuartzCoreFramework(QuartzCore.framework)
	OpenGLESframework (OpenGLES.framework)
	iOSAudio Support
	AVFoundationframework (AVFoundation.framework)
	Core Audio Frameworks (CoreAudio.framework, AudioToolbox.framework and AudioUnit.framework)
	OpenAudioLibrary(OpenAL)
	MediaPlayerframework (MediaPlayer.framework)
	CoreMidiFramework(CoreMIDI.framework)

	13. THEiOSCORESERVICESLAYER
	AddressBookframework (AddressBook.framework)
	CFNetworkFramework(CFNetwork.framework)
	CoreDataFramework (CoreData.framework)
	CoreFoundationFramework(CoreFoundation.framework)
	CoreMediaFramework(CoreMedia.framework)
	CoreTelephonyFramework(CoreTelephony.framework)
	EventKitFramework(EventKit.framework)
	FoundationFramework(Foundation.framework)
	CoreLocationFramework (CoreLocation.framework)
	MobileCoreServicesFramework (MobileCoreServices.framework)
	StoreKitFramework(StoreKit.framework)
	SQLitelibrary
	SystemConfigurationFramework(SystemConfiguration.framework)
	QuickLookFramework(QuickLook.framework)
	******************************EndofCoreServicesLayer*********************
	AccelerateFramework (Accelerate.framework)
	ExternalAccessoryframework(ExternalAccessory.framework)
	SecurityFramework(Security.framework)
	System(LibSystem)
	15. FILESYSTEMBASICS
	AbouttheiOS FileSystem
	iOSStandardDirectories:WhereFilesReside?
	WhereYouShould PutYourApp’sFiles

	PARTA
	1. Whatarethecomponents ofaLinux System?
	2. Whatarethemain supports fortheLinux modules?
	3. Defineshell.
	4. Whatismeantbykernel inLinux system?
	5. Whatis meantbysystemLibraries?
	6. WhatismeantbysystemUtilities?
	7. Whatdoyoumeantbyprocess?
	8. Whatismeantby Process-ID
	9. Whatismeantby personality?
	10. Whatismeantbybuffercache?
	11. Whatisthedisadvantageofstaticlinking?
	12. Whatis thefunction ofmodule management?
	13. Whatis thefunctionofdriverregistration?
	14. Whatisthefunction ofconflictresolutionmechanism?
	15. Whatis meantbydevicedrivers?
	16. Whatisacharacterdevice?
	17. Whatis MobileOS?
	18. Whatis iOS?
	19. Listtheservicesavailablein iOS.
	20. ListthefeaturesofiOS.
	21. Listtheadvantages of iOS
	22. ListthedisadvantagesofiOS
	23. Listtheadvantages of Android
	24. Listthedisadvantagesof Android
	25. HowareiOS andAndroidsimilar? Howaretheydifferent?
	26. DescribesomechallengesofdesigningOSformobiledevicecomparedwith designing OS for traditional PC’s

	Part-B

